As per Gauss Law
Net flux through enclosed surface is

here through this hemisphere total flux will pass through two portions
1). from the curved surface
2). from flat circular base
so now we have

given that


now we have



Density = Mass / Volume
Mass = Density * Volume
Mass = 30 g/cm³ * 10 cm³ = 300 g
Mass = 300 g
Answer:
The speed of the rock when it is at height h/4 is
.
Explanation:
At maximum height the final velocity of the rock is equal to 0. Let u is the initial velocity of the rock. Using the conservation of energy to find it as :
.......(1)
We need to find the speed of the rock when it is at height h/4. Let v' is the speed. Using 3rd equation of motion as :

here a = -g and s = h/4

Using equation (1) :

So, the speed of the rock when it is at height h/4 is
. Hence, this is the required solution.
Answer:
3.98V
Explanation:
Given
Pontential difference V as 3v
Energy delivered is 30%,
Recall that Enery E=1/2cv^2 from this E=V^2(since Current C is not provided we can assume a value 2)
So E=V^2
E=3^2=9
At full charge E=9,30%of 9,0.3*9=2.7 energy in capacitor is 9-2.7=6.3
But E=V^2
✓E=V
✓6.3=3.98V