1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lord [1]
2 years ago
13

Is the answer 1.05m?? help me please. i just want to confrim my answer :3

Physics
1 answer:
grandymaker [24]2 years ago
4 0
I believe you are correct! Have a good day! <3
You might be interested in
A 61.0-kg person jumps from rest off a 10.0-m-high tower straight down into the water. Neglect air resistance. She comes to rest
9966 [12]

Answer:

Explanation:

In this case, law of conservation of energy will be implemented. It states that "the energy of the system remains conserved until or unless some external force act on it. Energy of the system may went through the conversion process like kinetic energy into potential and potential into kinetic energy.But their total always remain the same in conserved systems."

Given data:

Height of tower = 10.0 m

Depth of the pool = 3.00 cm

Mass of person = 61.0 kg

Solution:

Initial energy = Final energy

U_{i} =  (K.E) + U_{f}

As the person was at height initially so it has the potential energy only.

mg(h_{1} +h_{2}) = K.E + mgh_{2}

K.E = mgh_{1}

K.E = (61.0)(9.8)(10)\\K.E = 5978 J

Lets find out the magnitude of the force that the water is exerting on the diver.

W =ΔK.E

F.h_{2} = 5978\\

F = \frac{5978}{3}

F = 1992.67 N

7 0
3 years ago
A baseball player friend of yours wants to determine his pitching speed. You have him stand on a ledge and throw the ball horizo
Alla [95]

Answer:

v_{ox}= 19.6\ m/s

Explanation:

Data provided in the question:

Height above the ground, H= 5.0m

Range of the ball, R= 20 m

Initial horizontal velocity = v_{ox}

Initial vertical velocity= v_{oy}  (Since ball was thrown horizontally only)

Acceleration acting horizontally, a_x = 0 m/s²  [ Since no acceleration acts horizontally) ]

Vertical Acceleration, a_y = 9.8 m/s² (Since only gravity acts on it)

Let 't' be the time taken to reach ground

Therefore, using equations of motion, we have

H= v_{oy}t+\frac{1}{2}a_yt^2

5= (0)t+\frac{1}{2}(9.8)t^2

t= \frac{10}{9.8}=1.02 s

Then using Equations of motion for horizontal motion,

R= v_{ox}t+\frac{1}{2}a_xt^2

20= v_{ox}(1.02)+\frac{1}{2}(0)(1.02)^2

v_{ox}= 19.6\ m/s

4 0
3 years ago
4. If a book falls off the kitchen counter and hits the floor 0.51 seconds later,
Zigmanuir [339]

Answer:

1.2 miles per second

Explanation:

6 0
3 years ago
Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 403 km above the earth’s sur
BARSIC [14]

Answer:

v_A=7667m/s\\\\v_B=7487m/s

Explanation:

The gravitational force exerted on the satellites is given by the Newton's Law of Universal Gravitation:

F_g=\frac{GMm}{R^{2} }

Where M is the mass of the earth, m is the mass of a satellite, R the radius of its orbit and G is the gravitational constant.

Also, we know that the centripetal force of an object describing a circular motion is given by:

F_c=m\frac{v^{2}}{R}

Where m is the mass of the object, v is its speed and R is its distance to the center of the circle.

Then, since the gravitational force is the centripetal force in this case, we can equalize the two expressions and solve for v:

\frac{GMm}{R^2}=m\frac{v^2}{R}\\ \\\implies v=\sqrt{\frac{GM}{R}}

Finally, we plug in the values for G (6.67*10^-11Nm^2/kg^2), M (5.97*10^24kg) and R for each satellite. Take in account that R is the radius of the orbit, not the distance to the planet's surface. So R_A=6774km=6.774*10^6m and R_B=7103km=7.103*10^6m (Since R_{earth}=6371km). Then, we get:

v_A=\sqrt{\frac{(6.67*10^{-11}Nm^2/kg^2)(5.97*10^{24}kg)}{6.774*10^6m} }=7667m/s\\\\v_B=\sqrt{\frac{(6.67*10^{-11}Nm^2/kg^2)(5.97*10^{24}kg)}{7.103*10^6m} }=7487m/s

In words, the orbital speed for satellite A is 7667m/s (a) and for satellite B is 7487m/s (b).

7 0
2 years ago
calculate the mass of displaced water when a piece of 30cm Iceberg with surface area 1000 cm^2 floats on water density of ice is
sweet [91]

Vi = As * h = 1000 * 30 = 30,000 cm^3 = Vol. of the ice.

Vb = (Di/Dw) * Vi = (0.9/1.0) * 30,000 = 27,000 cm^3 = Vol. below surface - Vol. of water displaced.

27,000cm^3 * 1g/cm^3 = 27,000 grams = 27 kg = Mass of water displaced.

3 0
3 years ago
Other questions:
  • Coherent light of wavelength 525 nm passes through two thin slits that are 4.15×10^(−2) mm apart and then falls on a screen 7
    14·1 answer
  • Question 9(Multiple Choice Worth 2 points)
    5·1 answer
  • Explain how atomic interactions determine a material to be transparent and opaque?
    6·1 answer
  • What happened the year that isaac newton was born
    10·2 answers
  • From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiat
    9·2 answers
  • The process by which lithospheric plates move apart creating spaces that are filled with hot magma is called _____.
    5·2 answers
  • What are the products of the light reactions that are subsequently used by the calvin cycle?
    15·1 answer
  • What kind of waves occur when the motion of the medium is parallel the the wave direction
    10·1 answer
  • Thank you if you them
    14·1 answer
  • An atom or ion has the abbreviated electron configuration [kr]. Select the species that it could not be
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!