Explanation:
A stable isotope is one that does not emit radiation, or, if it does its half-life is too long to have been measured. It is believed that the stability of the nucleus of an isotope is determined by the ratio of neutrons to protons.
Hope this helps you out : D
Answer:
Time allowed for incubation, size of the dish, the amount of light, amount of agar, the type of agar…etc
Explanation:
<span>If two fluorine atoms bonded with each other what kind of bond would be involved?
A. ionic
B. valence
C. covalent
D. non-metallic
C. covalent
</span>
The amount of Al2O3 in moles= 1.11 moles while in grams = 113.22 grams
<em><u>calculation</u></em>
2 Al + Fe2O3 → 2Fe + Al2O3
step 1: find the moles of Al by use of <u><em>moles= mass/molar mass </em></u>formula
= 60.0/27= 2.22 moles
Step 2: use the mole ratio to determine the moles of Al2O3.
The mole ratio of Al : Al2O3 is 2: 1 therefore the moles of Al2O3= 2.22/2=1.11 moles
Step 3: finds the mass of Al2O3 by us of <u><em>mass= moles x molar mass</em></u><em> </em>formula.
The molar mass of Al2O3 = (2x27) +( 16 x3) = 102 g/mol
mass is therefore= 102 g/mol x 1.11= 113.22 grams
Answer:
14.5 g silver
Explanation:
This is a problem using the stoichiometry of the reaction. First thing we need is the balanced equation:
Zn + 2 AgNO3 ----------------------- 2 Ag + Zn(NO3)2
We know that 14.6 g of Zn did not reacted, then we can calculate the amount of Zn reacted and do the calculation given the above reaction.
amount Zn reacted: 19.0 -14.6 g Zn = 4.4 g Zn
atomic weight of Zn: 65.37 g/mol
mol Zn reacted: 4.4 g Zn x ( 1 mol Zn/ 65.37 g Zn) = 0.067 mol Zn
We know from the balanced equation that moles of Ag are produced from 1 mol Zn therefore the mol of Ag produced are:
0.067 mol Zn x 2 mol Ag/ 1mol Zn = 0.135 mol Ag
and the mass of silver then will be given by multiplying by the atomic weight of silver:
0.135 mol Ag x 107.9 g/mol = 14.5 g Ag