1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali5045456 [20]
3 years ago
6

Which element would be a positive ion in a compound: Sr or Te

Chemistry
1 answer:
tamaranim1 [39]3 years ago
5 0
I'm certain that the answer is Sr
You might be interested in
If a system has a reaction quotient of 2.13 ✕ 10−15 at 100°C, what will happen to the concentrations of COBr2, CO, and Br2 as th
qaws [65]

This is an incomplete question, here is a complete question.

Consider the following equilibrium at 100°C.

COBr_2(g)\rightleftharpoons CO(g)+Br_2(g)

K_c=4.74\times 10^4

Concentration at equilibrium:

[COBr_2]=1.58\times 10^{-6}M

[Co]=2.78\times 10^{-3}M

[Br_2]=2.51\times 10^{-5}M

If a system has a reaction quotient of 2.13 × 10⁻¹⁵ at 100°c, what will happen to the concentrations of COBr₂, Co and Br₂ as the reaction proceeds to equilibrium?

Answer : The concentrations of Co and Br₂ decreases and the concentrations of COBr₂ increases.

Explanation :

Reaction quotient (Q) : It is defined as the measurement of the relative amounts of products and reactants present during a reaction at a particular time.

The given balanced chemical reaction is,

COBr_2(g)\rightleftharpoons CO(g)+Br_2(g)

The expression for reaction quotient will be :

Q=\frac{[CO][Br_2]}{[COBr_2]}

In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted.

Now put all the given values in this expression, we get

Q=\frac{(2.78\times 10^{-3})\times (2.51\times 10^{-5})}{(1.58\times 10^{-6})}=4.42\times 10^{-2}

The given equilibrium constant value is, K_c=4.74\times 10^4

Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.

There are 3 conditions:

When Q>K_c that means product > reactant. So, the reaction is reactant favored.

When Q that means reactant > product. So, the reaction is product favored.

When Q=K_c that means product = reactant. So, the reaction is in equilibrium.

From the above we conclude that, the Q that means product < reactant. So, the reaction is product favored that means reaction must shift to the product (right) to be in equilibrium.

Hence, the concentrations of Co and Br₂ decreases and the concentrations of COBr₂ increases.

3 0
3 years ago
What is my formula? Silver l acetate
Nutka1998 [239]

Answer:

Ag(I)C2H3O2 ....................

Silver only has a single valence value (+1) so you really don't need to put the (I) in the chemical formula.

7 0
3 years ago
Helppppppp please please please please please
weqwewe [10]
The answer is for this question is c
8 0
4 years ago
Read 2 more answers
What do you think caused the original properties of the substances to change in order to form “Elephant Toothpaste"?
jarptica [38.1K]
The starting material or materials for a chemical reaction are referred to as the reactants. The substance or substances produced from a chemical reaction are called products. Sometimes a secondary product, a byproduct, can also be created at the same time as the desired product(s).
Not every chemical reaction occurs in the same way. There are different types of chemical reactions, including synthesis reactions, decomposition reactions, and displacement reactions. In this experiment, a decomposition reaction takes place. During a decomposition reaction, a compound breaks apart into two or more products. Most decomposition reactions need an outside source of energy in order to take place.
Hydrogen peroxide is not a very stable compound, so it slowly decomposes into water and oxygen gas under normal conditions. In this reaction, yeast is used as a catalyst. A catalyst is a substance that helps to change the rate of a reaction. During the reaction, the catalyst is not consumed. As a result, the yeast makes the reaction occur much faster; it causes the hydrogen peroxide to break down and release the oxygen gas much faster.
The soap is used to help us “see” the reaction. Bubbles of oxygen become trapped in the soap, creating foam. The reaction occurs so quickly, releasing so much gas and creating so much foam, that the foam begins to flow out of the bottle. The result of this reaction looks like toothpaste being squeezed out of a tube.
In addition, the bottle will feel warm to the touch because the reaction is exothermic. An exothermic reaction or process is one that gives off energy. In contrast, an endothermic reaction or process is one that requires or absorbs energy.
HYPOTHESIS
uAdding yeast to hydrogen peroxide
will cause the hydrogen peroxide to
decompose quickly into water and oxygen gas, creating foam as the gas becomes trapped in liquid dish soap and pushes upward out of the bottle.
FORMULAS & EQUATIONS
Hydrogen peroxide is a relatively clear liquid substance. It is soluble in water and is often sold as a mixture of H2O2 in water. The hydrogen peroxide used in this experiment is actually a 6% solution of H2O2 in water.
The chemical formula for hydrogen peroxide is H2O2.
Hydrogen peroxide naturally decomposes into water and oxygen gas. The reaction is shown by the following equation:
2H2O2 (aq)g2H2O (l) + O2 (g)
The rate of the reaction can be increased by introducing a catalyst. In this experiment, the catalyst is yeast. Yeast is a microorganism that is part of the fungi family. Therefore, in the equation below, the catalyst is indicated above the arrow.
yeast
2H2O2 (aq) g 2H2O (l) + O2 (g)
The hydrogen peroxide used in the experiment is
actually a mixture of water and hydrogen peroxide.
CONNECT TO THE YOU BE THE CHEMIST CHALLENGE
For additional background information, please review CEF’s Challenge study materials online at http://www.chemed.org/ybtc/challenge/study.aspx.
• Additional information on elements, compounds, and physical and chemical changes can be found in the Classification of Matter section of CEF’s Passport to Science Exploration: The Core of Chemistry.
• Additional information on chemical reactions can be found in the Chemical Reactions section of CEF’s Passport to Science Exploration: Chemistry
8 0
3 years ago
Read 2 more answers
Convert 1297 cm to m.
Svet_ta [14]

Answer:

Not sure,12.97(if u get it wrong let me know)

Explanation:

100cm=1m

Then 1297cm=

1297 \100

= 12.97m

3 0
3 years ago
Read 2 more answers
Other questions:
  • The balanced combustion reaction for C 6 H 6 is 2 C 6 H 6 ( l ) + 15 O 2 ( g ) ⟶ 12 CO 2 ( g ) + 6 H 2 O ( l ) + 6542 kJ If 8.10
    8·1 answer
  • Redox reactions can be written as two half-reactions, focusing on the gain or loss of electrons by one of the chemical substance
    15·1 answer
  • a = Proton transfer d = SN2 Nucleophilic substitution g = Nucleophilic subs at carbonyl(acyl Xfer) b = Lewis acid/base e= Electr
    5·1 answer
  • What are some examples of monomers and oligomers?
    6·1 answer
  • State and explain each law of motion.
    5·2 answers
  • What would be the mass, in grams, of 3.50 x 1025 molecules of chlorine?<br><br> Show your work
    5·1 answer
  • A metal ion (X) with a charge of 4+ is attracted to non metal ion (Z) with a charge of 3-. Which of these formulas represents th
    6·1 answer
  • The enthalpy of combustion of naphthalene (MW = 128.17 g/mol) is -5139.6 kJ/mol. How much energy is produced by burning 0.8210 g
    6·1 answer
  • 300×175<br> Express your answer using the correct number of significant figures.
    8·1 answer
  • Respuesta funcion oxido de Mg+2 + O-2
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!