48.8 is the answer to 244 divided 5
Answer:
The correct answer is H
Step-by-step explanation:
1/4 of a wall in 2/3 of an hour is 40 min
so a wall takes 160 min which is 2 hours and 40 min
so 3 walls takes 8 hours
Supposing the line graphed is y = 2x + 3, the equation of the different line is:
y = 4x + 3.
<h3>What is a linear function?</h3>
A linear function is modeled by:

In which:
- m is the slope, which is the rate of change, that is, by how much y changes when x changes by 1.
- b is the y-intercept, which is the value of y when x = 0.
In this problem, the equation is:
y = 2x + 3
Hence, the slope is 2 and the y-intercept is 3. For the new line, we want to:
- Double the slope, hence m = 4.
- Keep the same y-intercept, hence b = 3.
Then, the equation of the different line is:
y = 4x + 3.
You can learn more about the equation of a line at brainly.com/question/24685547
The dimensions of a box that have the minium surface area for a given Volume is such that it is a cube. This is the three dimensions are equal:
V = x*y*z , x=y=z => V = x^3, that will let you solve for x,
x = ∛(V) = ∛(250cm^3) = 6.30 cm.
Answer: 6.30 cm * 6.30cm * 6.30cm. This is a cube of side 6.30cm.
The demonstration of that the shape the minimize the volume of a box is cubic (all the dimensions equal) corresponds to a higher level (multivariable calculus).
I guess it is not the intention of the problem that you prove or even know how to prove it (unless you are taking an advanced course).
Nevertheless, the way to do it is starting by stating the equations for surface and apply two variable derivation to optimize (minimize) the surface.
You do not need to follow with next part if you do not need to understand how to show that the cube is the shape that minimize the surface.
If you call x, y, z the three dimensions, the surface is:
S = 2xy + 2xz + 2yz (two faces xy, two faces xz and two faces yz).
Now use the Volumen formula to eliminate one variable, let's say z:
V = x*y*z => z = V /(x*y)
=> S = 2xy + 2x [V/(xy)[ + 2y[V/(xy)] = 2xy + 2V/y + 2V/x
Now find dS, which needs the use of partial derivatives. It drives to:
dS = [2y - 2V/(x^2)] dx + [2x - 2V/(y^2) ] dy = 0
By the properties of the total diferentiation you have that:
2y - 2V/(x^2) = 0 and 2x - 2V/(y^2) = 0
2y - 2V/(x^2) = 0 => V = y*x^2
2x - 2V/(y^2) = 0 => V = x*y^2
=> y*x^2 = x*y^2 => y*x^2 - x*y^2 = xy (x - y) = 0 => x = y
Now that you have shown that x = y.
You can rewrite the equation for S and derive it again:
S = 2xy + 2V/y + 2V/x, x = y => S = 2x^2 + 2V/x + 2V/x = 2x^2 + 4V/x
Now find S'
S' = 4x - 4V/(x^2) = 0 => V/(x^2) = x => V =x^3.
Which is the proof that the box is cubic.