Answer:
Approximately
.
Explanation:
The gallium here is likely to be produced from a
solution using electrolysis. However, the problem did not provide a chemical equation for that process. How many electrons will it take to produce one mole of gallium?
Note the Roman Numeral "
" next to
. This numeral indicates that the oxidation state of the gallium in this solution is equal to
. In other words, each gallium atom is three electrons short from being neutral. It would take three electrons to reduce one of these atoms to its neutral, metallic state in the form of
.
As a result, it would take three moles of electrons to deposit one mole of gallium atoms from this gallium
solution.
How many electrons are supplied? Start by finding the charge on all the electrons in the unit coulomb. Make sure all values are in their standard units.
.
.
Calculate the number of electrons in moles using the Faraday's constant. This constant gives the size of the charge (in coulombs) on each mole of electrons.
.
It takes three moles of electrons to deposit one mole of gallium atoms
. As a result,
of electrons would deposit
of gallium atoms
.
Answer:
Chloroform= limiting reactant
0.209mol of CCl4 is formed
And 32.186g of CCl4 is formed
Explanation:
The equation of reaction
CHCl3 + Cl2= CCl4 + HCl
From the equation 1 mol of
CHCl3 reacts with 1mol Cl2 to yield 1mol of CCl4
From the question
25g of CHCl3 really with Cl2
Molar mass of CHCl3= 119.5
Molar mass of Cl2 = 71
Hence moles of CHCl3= 25/119.5 = 0.209mol
Moles of Cl2 = 25/71 = 0.352mol
Hence CHCl3 is the limiting reactant
Since 1 mole of CHCl3 gave 1mol of CCl4
It implies that 0.209moles of CHCl3 will also give 0.209mol of CCl4
Mass of CCl4 formed = moles× molar mass= 0.209×154= 32.186g
In an endothermic reaction products are <u>HIGHER </u>than reactants in potential energy and <u>LESS </u>stable.
Explanation:
Energy is input into the reaction in an endothermic reaction. This means the products are of a higher energy level than the reactants. Therefore the reaction increases Gibb's free energy and reduces entropy. Remember in thermodynamic stability involves an increase in entropy and a decrease in Gibbs free energy. Therefore the products are less stable than the reactants. This is why endothermic reactions do not occur spontaneously like exothermic reactions.
Answer:
The answer is B. Urine, Feces
Explanation: