Yeah it uses some valuable scientific vocabulary and background knowledge, I hope this hypothesis will be good enough for your teacher (don't worry it will be)
Answer:
Covalent bond between identical atoms
Covalent bonds occur between identical atoms or between different atoms whose difference in electronegativity is insufficient to allow transfer of electrons to form ions. ... The two hydrogen atoms are attracted to the same pair of electrons in the covalent bond.
The answer is D: Saturated.
A saturated solution is one in which the exact maximum amount of solute has been dissolved. So, new solute will not dissolve in the solution. In contrast, an unsaturated solution can hold more solute, so if that option were correct, the crystal would have dissolved.
The other two terms are a bit more complicated. A supersaturated solution is one holding an amount of solute above the sustainable limit. Because of that, when more solute is added, the solution will immediately adjust, and some solute will come out of solution in a precipitate. Because the crystal isn't growing, we can eliminate this option.
A concentrated solution is one holding a relatively large amount of solute. However, you can have concentrated solutions that are saturated and unconcentrated (the word for this is dilute) solutions that aren't saturated. Therefore, we can say that because the crystal doesn't dissolve, this solution is saturated, but we can't say with certainty that it is concentrated.
Because the first three options are invalid, as described above, while the scenario does describe a saturated solution, D is the correct answer.
Answer:
74.0 g/mol
Explanation:
Step 1: Write the generic neutralization reaction
HA + NaOH ⇒ NaA + H₂O
Step 2: Calculate the reacting moles of NaOH
At the equivalence point, 33.83 mL of 0.115 M NaOH react.
0.03383 L × 0.115 mol/L = 3.89 × 10⁻³ mol
Step 3: Calculate the moles of HA that completely react with 3.89 × 10⁻³ moles of NaOH
The molar ratio of HA to NaOH is 1:1. The reacting moles of HA is 1/1 × 3.89 × 10⁻³ mol = 3.89 × 10⁻³ mol.
Step 4: Calculate the molar mass of the acid
3.89 × 10⁻³ moles of HA have a mass of 0.288 g.
M = 0.288 g / 3.89 × 10⁻³ mol = 74.0 g/mol
No. Although two such atoms are essentially chemically identical (they will chemically react in the same way), they are not completely identical.