Put a picture we can’t see the arrow
Answer:
The products of self-ionization of water are OH⁻ and H⁺.
Explanation:
- The water is self ionized according to the equation:
<em>H₂O → OH⁻ + H⁺.
</em>
<em></em>
The ionic product for water (Kw) = [OH⁻][H⁺] = 10⁻¹⁴.
Kw is also called "self-ionization constant" or "auto-ionization constant".
Answer: (C) Statements (i) and (iii)
Explanation: According to byjus.com, group VII elements are known as Halogens.
Not only that, but bbc.co.uk says " Atoms of group 7 elements all have seven electrons in their outer shell. This means that the halogens all have similar chemical reactions ."
It may just be (b) though as these are chemical reactions.
Answer:
Explanation:
From the given information:
TO start with the molarity of the solution:

= 0.601 mol/kg
= 0.601 m
At the freezing point, the depression of the solution is 

Using the depression in freezing point, the molar depression constant of the solvent 


The freezing point of the solution 

The molality of the solution is:

Molar depression constant of solvent X, 
Hence, using the elevation in boiling point;
the Vant'Hoff factor 


Answer:
The answer to your question is: letter D.
Explanation:
Noble gases are located in group VIIIA of the periodic table, this means that they have 8 eight electrons in their outermost shell.
Due to this characteristic, they are stable and do not react with other elements.
a. 1s22s22p4 The outermost shell of this electron configuration has 6 electrons, then this element has 6 electrons not 8. This configuration is of an element of the group VIA.
b. [Ne]2s22p2 The outermost shell of this element has 4 electrons, so this is not the configuration of a noble gas.
c. [Ar] 3s1 This element only has one electron in its outermost shell, so this is the electron configuration of an alkaline metal.
d. 1s22s22p6 This element has 8 electrons in its outermost shell, so this is the electron configuration of a noble gas.