potassium reacts the most vigorously.
Answer:
0.581 L or 581 mL
Explanation:
As stated in the question, the combined gas law is (P1*V1/T1) = (P2*V2/T2)
Write down the amounts you are given.
V1 = 0.152 L (I was taught to always convert milliliters to liters)
P1 = 717 mmHg
T1 = 315 K
V2 = ?
P2 = 463 mmHg
T2 = 777 K
The variable that is being solved for is final volume. Fill in the combined gas law equation with the corresponding amounts and solve for V2.
(717 mmHg*0.152 L) / (315 K) = (463 mmHg*V2) / (777 K)
0.346 = (463*V2) / (777)
0.346*777 = (463*V2) / (777)*777
268.842 = 463*V2
268.842/463 = (463*V2)/463
V2 = 0.581
Pressure and volume are indirectly proportional. This checks out because the volume increased while pressure decreased. Volume and temperature are directly proportional. This checks out because both volume and temperature increased. This is a good way to check your answers. You can also solve each side of the combined gas law equation to see if they are both the same.
We all know, Density = Mass/ volume.
When volume increases and the mass remains the same , the density will decrease considerably.
Answer:
P4(s) + 5 O2 (g)→ P4O10
Explanation:
If we desire to write a balanced chemical reaction equation, the rule of thumb is simple; the number of atoms of each element on the right hand side of the reaction equation must be the same as the number of atoms of the same element on the left hand side of the reaction equation. Once this condition is satisfied, the reaction equation is said to be balanced.
As we can see, we need one mole of P4 and five moles of O2 to produce one mole of P4O10.