Answer:
An example for gaining potential energy would be: A glass bottle on the top of a high shelf would have more high potential energy than a glass bottle on the middle or bottom shelf because it has a long way or more farther to fall down or brake.
Explanation:
Remember Potential Energy is the restored energy of an object has.
I hope this helps you!
Answer:
Explanation:
It may not make any difference. The information missing is the radius of the planet.
However for the purposes of the question, let us assume that it is roughly the same diameter of the earth. Then the weight of anyone would increase if the mass is all that changes..
The formula governing your weight is F = G * m1 *m2 / r^2. If m1 is the mass of the planet and it increases a lot then m2 (you) should increase. The question is done by a proportion.
Its period 5 from 5s25p6, with Xenon(54) as the noble gas. 2+6 = 8 electrons
54+8 = 62, or Sm.
Answer:

Explanation:
Hello,
In this case, as the copper's heat loss is gained by the water, the following energetic relationship is:

Therefore the equilibrium temperature shows up as:

Thus, by knowing that water's heat capacity is 4.18J/g°C, one obtains:

Best regards.