Image 1.1 -
Stomata are little moth-like structures in leaves, that, when open, allow the exchange of gases between the plant and the exterior.
Answer:
B.
Image 1.2 -
Without the existance of stomata, the process of transpiration wouldn't be possible if there weren't structures thata allowed the exchange of gases.
Answer:
A.
Image 2 -
So, we can elminate plants because they can photosynthesise; bacteria because they are prokaryotes and can photosynthesise; archaea because they are prokaryotes; hat leaves us with animals and fungi because these cannot photosynthesise and are both eukaryotes.
But, we cannot skip information. It is also said that the organism found has a cell wall, and animals do not have cell walls.
Answer:
C.
Image 4 -
Option 1 = cilia
Option 2 = flagella
Option 3 = pseudopods
Option 4 = pili (they're a meant to attacht to surfaces only bacteria)
Image 5 -
Runner stems are those that grow horizontally, therefore the fourth image with the long horizontal stems.
Rhizome stems are underground stems that can form roots or shoots through their nodes. Therefore, the third image with white background (the one with 2 drawn plants).
Tuber stems are large underground (mostly) structures used as storages for the plant. Therefore, this corresponds to the first image (the one with the white background.
Bulb stems are short and "bulby" stems, whith thick, leaves. Therefore, the second image (the one with the grass background).
Hope it helped,
BioTeacher101
Paliozoic era- sea life
Mezazoic era- dinorours
Centozoic era- current time
Answer:
This observation is True
Explanation:
Membrane integral proteins can function as ion channels during the transport of molecules through the membrane. Moreover, integral proteins can also act as pores for the transport of specific molecules between both sides of the membrane, ion channels that mediate effector signals, signaling transduction mechanisms capable of amplifying cellular responses and hormone receptors.