Answer:
t = 0.714 s and x = 5.0 m
Explanation:
This is a projectile throwing exercise, in this case when the skater leaves the bridge he goes with horizontal speed
vₓ = 7.0 m / s
Let's find the time it takes to get to the river
y = y₀ + v_{oy} t - ½ g t²
the initial vertical speed is zero and when it reaches the river its height is zero
0 = y₀ + 0 - ½ g t²
t =
t = ra 2 2.5 / 9.8
t = 0.714 s
the distance traveled is
x = vₓ t
x = 7.0 0.714
x = 5.0 m
Answer:
option B
Explanation:
given,
height of building = 0.1 km
ball strikes horizontally to ground at = 65 m
speed at which the ball strike = ?
vertical velocity = 0 m/s
time at which the ball strike



t = 4.53 s
vertical velocity at the time 4.53 s = g × t = 9.8 × 4.53 = 44.39 m/s
horizontal velocity =
=14.35 m/s
speed of the ball =
= 46.65 m/s
hence, the speed of the ball just before it strike the ground = 47 m/s
The correct answer is option B
Answer:
125.83672 seconds
Explanation:
P = Power of the horse = 1 hp = 746 W (as it is not given we have assumed the horse has the power of 1 hp)
m = Mass of professor = 103 kg
g = Acceleration due to gravity = 9.8 m/s²
h = Height of professor = 93 m
Work done would be equal to the potential energy

Power is given by

The time taken by the horse to pull the professor is 125.83672 seconds
Answer:
1.0s
Explanation:
distance = 1/2 × acceleration × time2 + intial speed × time