Anton Von Leeuwenhoek, in the early 1600s, saw these tiny microbes and called them "animalcules" and "wee beasties".
Answer:
a = 1.152s
b = 0.817 m
c = 7.29m/s
Explanation: let the following
From the first equation of linear motion
V = u+at..........1
parameters be represented as :
t = Time taken
v = Final velocity
a = Acceleration due to gravity = 9.8m/s²
u = Initial velocity = 4 m/s
s = Displacement
V = 0
Substitute the values into equation 1
0 = 4-9.8(t)
-4 = -9.8t
t = 4/9.8
t = 0.408s
From : s = ut+1/2at^2.........2
S = 4×0.408+0.5(-9.8)×0.408^2
S= 1.632-4.9(0.166)
S = 1.632-0.815
S = 0.817m
Her highest height above the board is 0.817 m
Total height she would fall is 0.817+1.90 = 2.717 m
From equation 2
s = ut+1/2at^2
2.717 m = 0t+0.5(9.8)t^2
2.717 m = 0+4.9t^2
2.717 m = 4.9t^2
2.717/4.9 = t^2
0.554 =t^2
t =√0.554
t = 0.744s
Hence, her feet were in the air for 0.744+0.408seconds
= 1.152s
Also recall from equation 1
V= u+at
V = 0+9.8(0.744)
V = 7.29m/s
Hence, the velocity when she hits the water is 7.29m/s
Finally,
a = 1.152s
b = 0.817 m
c = 7.29m/s
Answer:
(B) The wavelength that a star radiates the most energy is inversely proportional to the temperature.
Explanation:
As we know that
According to Wien's law wavelength is inverse proportional to the temperature .
λ.T = Constant.
λ.∝ 1 /T
As we know that star radiates wavelength and this wavelength is inverse proportional to the temperature of the star.
The temperature of cool star is cooler than the temperature of hot star that is cool star looks red and hot star looks blue.Cool star have low energy and hot star have high energy.
So option B is correct.
(B) The wavelength that a star radiates the most energy is inversely proportional to the temperature.
Answer:
TRUE
Explanation:
Protons have a positive charge. Electrons have a negative charge. The charge on the proton and electron are exactly the same size but opposite. Neutrons have no charge.
Answer:
The toy's energy is 18 J.
Explanation:
We have, a 4 kg toy is lifted off the ground and falls at 3 m/s. It is required to find toy's energy.
The toy will have kinetic energy due to its motion. The energy is given by :

So, the toy's energy is 18 J.