<h3>
Answer: 10.1 cm approximately</h3>
=====================================================
Explanation:
The double tickmarks show that segments DE and EB are the same length.
The diagram shows that DB = 16 cm long
We'll use these facts to find DE
DE+EB = DB
DE+DE = DB
2*DE = DB
DE = DB/2
DE = 16/2
DE = 8
-------------
Now let's focus on triangle DEC. We just found the horizontal leg is 8 units long. The vertical leg is EC which is unknown for now. We'll call it x. The hypotenuse is CD = 9
Use the pythagorean theorem to find x
a^2+b^2 = c^2
8^2+x^2 = 9^2
64+x^2 = 81
x^2 = 81 - 64
x^2 = 17
x = sqrt(17)
That makes EC to be exactly sqrt(17) units long.
If you follow those same steps for triangle ADE, then you'll find the missing length is AE = 6
---------------
So,
AC = AE+EC
AC = 6 + sqrt(17)
AC = 10.1231056256177
AC = 10.1 cm approximately
Recall the double angle identity for cosine:

It follows that

Since 0° < 22° < 90°, we know that sin(22°) must be positive, so csc(22°) is also positive. Let x = 22°; then the closest answer would be C,

but the problem is that none of these claims are true; cot(32°) ≠ 4/3, cos(44°) ≠ 5/13, and csc(22°) ≠ √13/2...
Answer:
2340
Step-by-step explanation:
(-12)×(13)×(-15)
=(-156)×(-15)[ (+) × (-) = (-)]
=2340[(-) × (-) = (+)]
Answer:
11 music lessons.
Step-by-step explanation:
We know that membership costs $165 and members pay $25 per music lesson.
So, we can write the following expression:

The 165 represents the one-time membership fee and the 25m represents the cost for m music lessons.
We know that non-members pay no membership fee but their cost per lesson is $40. So:

Represents the cost for non-members for m music lessons.
We want to find how many music lessons would have to be taken for the cost to be the same for both members and non-members. So, we can set the expressions equal to each other:

And solve for m. Let's subtract 25m from both sides:

Now, divide both sides by 15:

So, at the 11th music lesson, members and non-members will pay the same.
Further Notes:
This means that if a person would only like to take 10 or less lessons, the non-membership is best because there is no initial fee.
However, if a person would like to take 12 or more lessons, than the membership is best because the membership has a lower cost per lesson than the non-membership.
And we're done!