All Mountains are built through a general process called "deformation" of the crust of the Earth. Deformation is a fancy word which could also mean "folding". An example of this kind of folding comes from the process described below.
<span>When two sections of the Earth's lithosphere collide, rather than being subducted, where one slab of lithosphere is forced down to deeper regions of the Earth, the slabs pile into each other, causing one or both slabs can fold up like an accordion. This process elevates the crust, folds and deforms it heavily, and produces a mountain range. Mountain building and mantle subduction usually go together. </span>
Answer:
The spring constant is 3750 N/m
Explanation:
Use the following two relationships:
(Work) = (Force) x (Displacement)
(Force) = (Spring constant) x (Displacement)
=>
(Spring constant) = (Force) / (Displacement) = (Work) / (Displacement)^2
(Spring constant) = 6.0 kg.(m^2/s^2) / 0.0016 m^2 = 3750 N/m
The spring constant is 3750 N/m
Answer:
v2 = 27.3m/s
Explanation:
Assuming forward as positive.
Mass = m1 = 64kg
Let v be the common velocity of the student and the skateboard.
mass of skateboard = m2 = 5.94kg
v = 1.4m/s
Since the skateboard and the student are initially moving together at the same velocity their momentum together is
(m1 + m2)v
Let the final velocity of the student be v1 and the final velocity of the skateboard be v2
v1 = – 1.0m/s (falls backwards that's why the velocity is negative since we are assuming forward as positive)
Then from conservation of momentum, momentum before is equal to momentum after.
(m1 + m2)v = m1v1 + m2v2
m2v2= (m1 + m2)v – m1v1
v2 = ( (m1 + m2)v – m1v1)/m2
v2 = ( (64 + 5.94)×1.4 – 64×(-1.0))/5.94
v2 = ( (64 + 5.94)×1.4 + 64×1.0)/5.94
v2 = 27.3m/s
Answer:
As per the fossil fuel records, magnetic field reversal does not impact living beings. It will take almost a century for the poles to complete the shift. Meanwhile, the earth is left with almost zero magnetic field.
I'm actually going ahead in the book (DC Circuits) so this isn't really homework but I figured the tag was appropriate....the name of the chapter is Ohm's Law and Watt's Law.
<span>Problem: Calculate the power dissipated in the load resistor, R, for each of the circuits.Circuit (a): V = 10V; I = 100mA; R = ?; Since I know
V and
I use formula
P = IV: P = IV = (100mA)(10V) = 1 W.</span>
The next question is what I'm not sure about:
Question: What is the power in the circuit (a) above if the voltage is doubled? (Hint: Consider the effect on current).
What I did initially was: P = IV = (100mA)(2V) = 2 W
But then I looked at the answer and it said 4 W, then I looked at the Hint again. Then I remembered in the book early on it said "If the voltage increases across a resistor, current will increase."
So question is: When solving problems I have to increase (or decrease) current (I) every time voltage (V) is increased (decreased) in a problem, right? How about the other way around, when increasing current (I), you need to increase voltage (V). I'm pretty sure that's how they got 4 W, but want to make sure before I head to the next section of the book.
P = IV = (200mA)(2V) = 4 W