Answer:
All three pendulum will attain same velocity
Explanation:
All three pendulum will attain same velocity irrespective of their mass difference in isolated system (means where air drag are negligible) and at same length
As you know when velocity is calculated we can not take mass into account.
Scalar Quantity :-
→ These are the quantities with magnitude only . These quantities doesn't have to be mentioned with direction
eg.)=> Mass , Temprature .
Vector Quantity :-
→ These quantities are described with both Magnitude and Direction . These quantities follow special type of algebra called Vector algebra .
eg.)=> Force , Displacement
_______________________________
Hope It Helps You. ☺
Answer:
Explanation:
I suppose it has to do with the way the diagram is drawn. The heat does not reflect which makes both A and B incorrect.
C would have nothing to do with either reflection or refraction.
That only leaves D which is the answer.
The answers is A and C hope this helps :)
Answer:
0.12
Explanation:
The acceleration due to gravity of a planet with mass M and radius R is given as:
g = (G*M) / R²
Where G is gravitational constant.
The mass of the planet M = 3 times the mass of earth = 3 * 5.972 * 10^24 kg
The radius of the planet R = 5 times the radius of earth = 5 * 6.371 * 10^6 m
Therefore:
g(planet) = (6.67 * 10^(-11) * 3 * 5.972 * 10^24) / (5 * 6.371 * 10^6)²
g(planet) = 1.18 m/s²
Therefore ratio of acceleration due to gravity on the surface of the planet, g(planet) to acceleration due to gravity on the surface of the planet, g(earth) is:
g(planet)/g(earth) = 1.18/9.8 = 0.12