Answer:
For the first situation, we first need to find the mass of the second train car.
In order to do that, we apply the conservation of the amount of movement:

and we have as a result:
m2 = 289.6875
For the second situation, also we will apply the conservation of the amount of movement:

and we have as a result:
V = 2.64 (it is moving to the right)
10 cm3 because the density equition is d = m/v
<h3><u>
For the aceleration:</u></h3>
First, let's find the resultant, and <u>applicate 2nd law of Newton</u> using the resultant, so:
R = ma
F - Ff = ma
Data:
F = Force = 1150 N
Ff = Friction force = 490 N
m = Mass = 150 kg
a = Aceleraction = ?
Replacing according our data:
1150 N - 490 N = 150 kg * a
660 N = 150 kg * a
660 N / 150 kg = a
a = 4,4 m/s² ← Aceleration of the object
<h3><u>For the normal force:</u></h3>
The normal force IS NOT the resultant force, the normal force's the force between the ground and the object, in another words, is the weight of the object, and for the weight:
w = mg
w = 150 kg * 10 m/s²
w = 1500 N ← Normal force between object and ground.