The starting angle θθ of a pendulum does not affect its period for θ<<1θ<<1. At higher angles, however, the period TT increases with increasing θθ.
The relation between TT and θθ can be derived by solving the equation of motion of the simple pendulum (from F=ma)
−gsinθ=lθ¨−gainθ=lθ¨
For small angles, θ≪1,θ≪1, and hence sinθ≈θsinθ≈θ. Hence,
θ¨=−glθθ¨=−glθ
This second-order differential equation can be solved to get θ=θ0cos(ωt),ω=gl−−√θ=θ0cos(ωt),ω=gl. The period is thus T=2πω=2πlg−−√T=2πω=2πlg, which is independent of the starting angle θ0θ0.
For large angles, however, the above derivation is invalid. Without going into the derivation, the general expression of the period is T=2πlg−−√(1+θ2016+...)T=2πlg(1+θ0216+...). At large angles, the θ2016θ0216 term starts to grow big and cause
Answer:
B) Pressure on the scale, not registered as weight.
Explanation:
This is because energy (derived from weight) becomes compiled on the tips of your toes, and therefore does not increase your weight, but simply the pressure at a smaller point
Answer: 71.7 KJ
Explanation:
The rotational kinetic energy of a rotating body can be written as follows:
Krot = ½ I ω2
Now, any point on the rim of the flywheel, is acted by a centripetal force, according to Newton’s 2nd Law, as follows:
Fc = m. ac
It can be showed that the centripetal acceleration, is related with the angular velocity and the radius, as follows:
ac = ω2 r
We know that this acceleration has a limit value, so , we can take this limit to obtain a maximum value for the angular velocity also.
As the flywheel is a solid disk, the rotational inertia I is just ½ m r2.
Replacing in the expression for the Krot, we have:
Krot= ½ (1/2 mr2.ac/r) = ¼ mr ac = ¼ 67.0 Kg. 1.22 m . 3,510 m/s2 = 71. 7 KJ
Answer:It is actually the South Magnetic pole
Explanation:The magnetic pole near earth's geographic north pole is actually the south magnetic pole. When it comes to magnets, opposites attract. This fact means that the north end of a magnet in a compass is attracted to the south magnetic pole, which lies close to the geographic north pole.