There are six liquids found on the periodic table.
1. Bromine
2. Mercury
3. Caesium
4. Gallium
5. Rubidium
6. Francium
To answer the problem above first we need to find the difference of molar mass of NI3 from I2, 394.71 g/mol - 253.80 g/mol = 140.91 g/mol. Knowing the molar mass of the difference of NI3 from I2, in equation mass (g) / moles (mol) = molar mass, then we substitute. 3.58g / moles = 140.91 g/mol.
moles = 3.58 / 140.91 = 0.025 moles.
Answer:
The empirical formula of the compound C₃H₆N₂ is C₃H₆N₂
Explanation:
The empirical formula of a compound is the formula of the compound given in the (smallest) whole number ratio of the elements of the compound
The empirical formula of S₂O₂ is SO
The empirical formula of C₃H₆O₃ is CH₂O
The given compound's molecular formula is C₃H₆N₂
The smallest whole number ratio of of the elements of the compound is 3:6:2, therefore, the empirical formula of the compound C₃H₆N₂ is C₃H₆N₂.
Answer:
D, Li2S
Explanation:
This is because Lithium, which is in group IA of the periodic table, has a charge of +1. Sulfur will have a charge of -2 because it is in group 6A in the periodic table, which means to balance these out, there needs to be 2 lithium ions which would result in a charge of +2. With Lithium now having a charge of +2 due to having two atoms in the compound, and sulfur already having a charge of -2 as one atom, these two cancel out meaning the compound is neutral.