Answer:
Explanation:
<em>Waves are actually energy passing through the water, causing it to move in a circular motion. ... This phenomenon is a result of the wave's orbital motion being disturbed by the seafloor.</em>
<em />
<em>The direction a wave propagates is perpendicular to the direction it oscillates for transverse waves. A wave does not move mass in the direction of propagation; it transfers energy.</em>
Different forms of matter have different melting/boiling points. For example, at 100 degrees Celsius, H2O (water) will turn from lliquid to gas. But NaOH (table salt) doesn't even go from solid to liquid until some 800 degrees Celsius. So, in order to figure out which state matter is at 35 Celsius, you'd have to be more specific about what kind of matter...
The compound name for H3S5 is hydrosulfide sulfanide sulfide
Answer:
2Ag⁺ (aq) + CrO₄⁻² (aq) ⇄ Ag₂CrO₄ (s) ↓
Ksp = [2s]² . [s] → 4s³
Explanation:
Ag₂CrO₄ → 2Ag⁺ + CrO₄⁻²
Chromate silver is a ionic salt that can be dissociated. When we have a mixture of both ions, we can produce the salt which is a precipitated.
2Ag⁺ (aq) + CrO₄⁻² (aq) ⇄ Ag₂CrO₄ (s) ↓ Ksp
That's the expression for the precipitation equilibrium.
To determine the solubility product expression, we work with the Ksp
Ag₂CrO₄ (s) ⇄ 2Ag⁺ (aq) + CrO₄⁻² (aq) Ksp
2 s s
Look the stoichiometry is 1:2, between the salt and the silver.
Ksp = [2s]² . [s] → 4s³
1. the amount of heat that it would take would be :
5.1 x 10^4 J
2. I think the substance would be : Iron
3. the amount of heat required would be :
1.13 x 10^4 kJ
Hope this helps