<h3><u>Question: </u></h3>
The equation for the speed of a satellite in a circular orbit around the Earth depends on mass. Which mass?
a. The mass of the sun
b. The mass of the satellite
c. The mass of the Earth
<h3><u>Answer:</u></h3>
The equation for the speed of a satellite orbiting in a circular path around the earth depends upon the mass of Earth.
Option c
<h3><u>
Explanation:
</u></h3>
Any particular body performing circular motion has a centripetal force in picture. In this case of a satellite revolving in a circular orbit around the earth, the necessary centripetal force is provided by the gravitational force between the satellite and earth. Hence
.
Gravitational force between Earth and Satellite: 
Centripetal force of Satellite :
Where G = Gravitational Constant
= Mass of Earth
= Mass of satellite
R= Radius of satellite’s circular orbit
V = Speed of satellite
Equating
, we get
Speed of Satellite 
Thus the speed of satellite depends only on the mass of Earth.
I'm not sure but I had this question on a benchmark I think its the density of the wire you need to find the density or the mass I'm not sure but i do remember this question
Answer:
Buffers
Explanation:
A buffer solution is a solution containing weak acids and their salts or weak bases and their salts.
A buffer solution is an equilibrium system that resists changes in pH or pOH when a small amount of an acid or base is added hence it is a solution of fairly constant pH value.
Answer:
4.7 s
Explanation:
The complete question is presented in the attached image to this solution.
v(t) = 61 - 61e⁻⁰•²⁶ᵗ
At what time will v(t) = 43 m/s?
We just substitute 43 m/s into the equation for the velocity of the diver and solve for t.
43 = 61 - 61e⁻⁰•²⁶ᵗ
- 61e⁻⁰•²⁶ᵗ = 43 - 61 = -18
e⁻⁰•²⁶ᵗ = (18/61) = 0.2951
In e⁻⁰•²⁶ᵗ = In 0.2951 = -1.2205
-0.26t = -1.2205
t = (1.2205/0.26) = 4.694 s = 4.7 s to the nearest tenth.
Hope this Helps!!!