Answer:
The time of travel and the distance between neighboring dots is always the same. So, the speed between neighboring dots is constant. This speed will be the same as the average speed in part F.
Explanation:
This is the sample answer provided, do not copy word-for-word, or you will most likely get in trouble for cheating.
Answer:
A
Explanation:
the balancing is correct in the first one
Part A)
As we know that spring force is given by
F = kx
here x = stretch in the spring from natural length
So here when spring reaches to its natural length
Force due to spring = 0
so acceleration = 0
Part b)
When spring is compressed from its natural length it will have elastic potential energy in it
so it is given by

now we know that there is no friction in it so maximum kinetic energy of the launcher must be equal to the elastic potential energy of the spring

here we have
k = 70 N/m
x = 0.4 m


Part c)
Now to find the speed we know that



so its speed is 6.11 m/s
Answer:

Explanation:
From the question we are told that:
Beat frequency 
Frequency 
Generally the equation for Frequency of the violin is mathematically given by



Therefore the period of the violin string oscillations is



Answer:
7200 N/m
Explanation:
Metric unit conversion
100g = 0.1 kg
5 cm = 0.05 m
50 cm = 0.5 m
As the block is released from the spring and travelling to height h = 1.5m off the ground, the elastics energy is converted to work of friction force and the potential energy at 1.5 m off the ground
The work by friction force is the product of the force F = 15N itself and the distance s = 0.5 m

Let g = 10 m/s2. The change in potential energy can be calculated as the following:

Therefore, as elastic energy is converted to potential energy and work of friction:


