Answer:
Explanation:
Given that,
Mass m = 6.64×10^-27kg
Charge q = 3.2×10^-19C
Potential difference V =2.45×10^6V
Magnetic field B =1.6T
The force in a magnetic field is given as Force = q•(V×B)
Since V and B are perpendicular i.e 90°
Force =q•V•BSin90
F=q•V•B
So we need to find the velocity
Then, K•E is equal to work done by charge I.e K•E=U
K•E =½mV²
K•E =½ ×6.64×10^-27 V²
K•E = 3.32×10^-27 V²
U = q•V
U = 3.2×10^-19 × 2.45×10^6
U =7.84×10^-13
Then, K•E = U
3.32×10^-27V² = 7.84×10^-13
V² = 7.84×10^-13 / 3.32×10^-27
V² = 2.36×10^14
V=√2.36×10^14
V = 1.537×10^7 m/s
So, applying this to force in magnetic field
F=q•V•B
F= 3.2×10^-19 × 1.537×10^7 ×1.6
F = 7.87×10^-12 N
Answer:
White light contains seven colors, which are separated by the prism.
White light reacts with chemicals in the air to produce seven colors.
Explanation:
It was first observed by Sir Issac Newton, that when white light is passed through a prism, an elongated, coloured patch of light is obtained on a screen placed behind the prism. The seven colours obtained constitute the spectrum of white light.
In nature, white light is separated into its constituent wavelengths when white light interacts with substances in the atmosphere.
Answer:
The forces creating the net force must lie in the same direction.
Explanation:
newton's second law states that the net force acting on the body is equal to the product of mass and the acceleration of the body.
If there are several forces acting on the body in different directions, then we have to find teh net force by using the vector sum and then find the acceleration.
It is not necessary that all the forces acting in the same direction.
if they are in different directions then we have to find the net force by t=using the formula for the vector sum.
They all have segmented limbs, a hard exoskeleton, a pair of antennae and a segmented body.
Explanation:
The structural diversity of carbon-based molecules is determined by following properties:
1. the ability of those bonds to rotate freely,
2.the ability of carbon to form four covalent bonds,
3.the orientation of those bonds in the form of a tetrahedron.