Answer:
a H2CO3 b HCO3- and c H+ and HCO3-
Explanation:
As the pKa value of phenol is more than that of carbonic acid(H2CO3), the carbonic acid will have high Ka value than that of phenol.
The acid that contain high Ka value act as stong acid.From that point of view H2CO3 is a strong acid than phenol as the Ka value of carbonic acid is greater than that of phenol.
The conjugate base of H2CO3 is bicarbonate ion(HCO3-)
c The species that predorminates at equilibrium are H+ and HCO3-
pH value 1 represents a solution with the lowest OH⁻ion concentration.
<u>Explanation:</u>
pH is given by the expression as the negative logarithm to the base 10 of the concentration of hydrogen ions.
pH = -log₁₀[H⁺]
If the pH is lower than 7, pH < 7 then it is acidic
If the pH = 7, then it is neutral
If the pH > 7, then it is basic
If pH is 1 then the solution is showing mostly acidic character,which is least basic in its character.
So if the pH is 1, which is most acidic and least basic solution that is lowest OH⁻ ion concentration.
2 H₂ + O₂ = 2 H₂O
Answer B only synthesis.
hope this helps!
Answer:
28
Explanation:
28 is correct. (NH4)2 is equal to 10 atoms. (8 H and 2 N ) CO3 is equal to 4 atoms. (1 C and 3 O) That's 14 atoms. But it's two molecules of this. So you just multiply by the number of molecules (2), and you get 28.
Answer: Mass Of CFC that needs to evaporate for the freezing of water = 328.24 g
Explanation: Heat gained by the CFC = Heat lost by water
Heat lost by water = Heat required to take water's temperature to 0°c + Heat required to freeze water at 0°c
Heat required to take water's temperature from 33°c to 0°c = mCΔT
m = 201g, C = 4.18 J/(gK), ΔT = 33
mCΔT = 201 × 4.18 × 33 = 27725.94 J
Heat required to freeze water at 0°c = mL
m = 201g, L = 334 J/g
mL = 201 × 334 = 67134 J
Heat gained by CFC to vaporize = mH = 27725.94 + 67134 = 94859.94 J
H = 289 J/g, m = ?
m × 289 = 94859.9
m = 328.24 g
QED!!