Answer:
So you know the things about outer space like facts that you might not know
Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.
Weathering<span> breaks down and loosens the surface minerals of rock so they can be transported away by agents of erosion such as water, wind and ice. There are </span>two types<span> of </span>weathering<span>: </span>mechanical<span> and </span>chemical<span>. </span>Mechanical weathering<span> is the disintegration of rock into smaller and smaller fragments.</span>
<span>Okay then I would go with choice B since fusion takes place in the sun which is a giant star.</span>
a) 56g
<h3>Calculation:</h3>
At STP,
22.4 L of N₂ = 1 mol
We have given 44.8 L of N₂, therefore,
44.8 L of N₂ = 
=
mol
We know that,
1 mol of N₂ = 28 g
Hence,
2 mol of N₂ = 28 × 2
= 56g
Hence, there are 56 g of N₂ in 44.8 L of nitrogen gas.
Learn more about calculation at STP here:
brainly.com/question/9509278
#SPJ4