Answer:
The volume of helium at 25.0 °C is 60.3 cm³.
Explanation:
In order to work with ideal gases we need to consider absolute temperatures (Kelvin). To convert Celsius to Kelvin we use the following expression:
K = °C + 273.15
The initial and final temperatures are:
T₁ = 25.0 + 273.15 = 298.2 K
T₂ = -196.0 + 273.15 = 77.2 K
The volume at 77.2 K is V₂ = 15.6 cm³. To calculate V₁ in isobaric conditions we can use Charle's Law.

The answer is force=6, time=3, so C is correct
An ion-dipole interaction is the result of an electrostatic interaction between a charged ion and a molecule that has a dipole. It is an attractive force that is commonly found in solutions, especially ionic compounds dissolved in polar liquids. A cation can attract the partially negative end of a neutral polar molecule, while an anion attracts the positive end of a polar molecule. Ion-dipole attractions become stronger as the charge on the ion increases or as the magnitude of the dipole of the polar molecule increases.
This force of attraction is between an ion and a charge , it is weaker force than covalent bond and ionic bond . EX - The ion dipole interaction takes place between water and sodium ion , in it there is a small charge on oxygen molecule in water which is attracted by sodium charge .
Most commonly found in solutions. Especially important for solutions of ionic compounds in polar liquids.
A positive ion (cation) attracts the partially negative end of a neutral polar molecule.
to learn more about dipole interactions:-
https://brainly.in/question/1157107
It would form into NaCl because Na has a +1 charge while Cl has a -1 charge.
Dang hard
Can you mark me Brainlyist