Answer: The correct answer is: " endothermic . "
______________________________________
<u>Note</u>: Heat flows <u> into </u> [heat <u> may be </u> absorbed within] an "<u>endothermic</u>" reaction or system
To the contrary, heat flows <u> </u><u>out </u> [heat <u> may </u><em> </em>exit from or <u> may be </u> released from] an "<u>exothermic</u>" reaction or process.
<u>Hint</u>: Think of the "prefixes" of: "<u>endo</u>thermic" and "<u>exo</u>thermic" :
_____________________________________
1) endo- = "within" (as in "endothermic" —heat tends to be absorbed/"within"/"released within"/released within"/into" ;
2) exo- = " outwards"/"exit" (as in "exothermic") —heat tends to '"exit"/leave/escape from/"be released out of/form".
_____________________________________
Hope this is helpful to you!
Best wishes to you in your academic pursuits
—and within the "Brainly" community"!
_____________________________________
Answer:
When you place the north pole of one magnet near the south pole of another magnet, they are attracted to one another.
Explanation:
135.1kPa
Explanation:
Given parameters:
T1 = 27°C
P1 = 101.325 kPa
T2 = 127°C
Unknown:
P2 = ?
Solution:
Using a derivative of the combined gas law where we assume that the gas has a constant volume, we can solve for the unknown.
At constant volume:

P1 is the initial pressure
T1 is the initial temperature
P2 is the final pressure
T2 is the final temperature
Take the given temperature to K
T1 = 27 + 273 = 300K
T2 = 127 + 273 = 400K
Input the variables:

P2 = 135.1kPa
learn more:
Boyle's law brainly.com/question/8928288
#learnwithBrainly
Answer:
Kr has one more electron than br and so, the nuclear charge increase, which means the nuclear attraction between the nucleus and outer most electron will increase and so will be harder to remove the electron from Kr than Br, so Kr has higher 1st ionisation.
Mark me brainliest!
God bless!