The moon is what makes currents so if there was no moon there would be no current in our oceans. The way it makes currents is from the gravitational pull.
Brainliest? :)
Which lists the correct order of the steps?<br> 4,2,1,3<br>4,1,3,2<br> 4,3,1, 2<br>4, 2, 3.1
Alik [6]
Answer:
4,3,1,2 thise is my answer.
Answer:
a) K = [ CO2(g) ]
⇒ the [ CaCO3(s) ] does not appear in the denominator of the equilibrium constant, as it is a pure solid substance.
b) Kp = K (RT)∧Δn
⇒ the values of K and Kp are not the same
c) K >> 1, The reaction has a high yield and is said to be shifted to the right. then the rate of the forward reaction is greater than the rate of the reverse reaction at equilibrium.
Explanation:
a) CaCO3(s) ↔ CaO(s) + CO2(g)
⇒ K = [ CO2(g) ]
∴ the [ CaCO3(s) ] does not appear in the denominator of the equilibrium constant, as it is a pure solid substance.
b) H2(g) + F2(g) ↔ 2 HF(g)
⇒ K = [ HF(g) ] ² / [ F2(g) ] * [ H2(g) ]
⇒ Kp = PHF² / PF2 * PH2
for ideal gas:
PV = RTn
⇒ P = n/V RT = [ ] RT
⇒ Kp = K (RT)∧Δn
⇒ the values of K and Kp are not the same.
c) K >> 1, The reaction has a high yield and is said to be shifted to the right. then the rate of the forward reaction is greater than the rate of the reverse reaction at equilibrium.
Answer:
D. 34.5g
Explanation:
Using the following formula to calculate the mass of 1.5moles of sodium (Na);
Mole = mass/molar mass
Molar mass of Na = 23g/mol
mass = mole × molar mass
Mass of Na = 1.5mol × 23g/mol
Mass of Na = 34.5g
Answer:
three
Explanation:
Every element in the boron group has three electrons in its outermost shell (so-called valence electrons), and for each element there is a sharp jump in the amount of energy required to remove the fourth electron, reflecting the fact that this electron must be removed from an inner shell.