Answer:
300 K
Explanation:
First, we have find the specific heat capacity of the unknown substance.
The heat gained by the substance is given by the formula:
H = m*c*(T2 - T1)
Where m = mass of the substance
c = specific heat capacity
T2 = final temperature
T1 = initial temperature
From the question:
H = 200J
m = 4 kg
T1 = 200K
T2 = 240 K
Therefore:
200 = 4 * c * (240 - 200)
200 = 4 * c * 40
200 = 160 * c
c = 200/160
c = 1.25 J/kgK
The heat capacity of the substance is 1.25 J/kgK.
If 300 J of heat is added, the new heat becomes 500 J.
Hence, we need to find the final temperature, T2, when heat is 500 J.
Using the same formula:
500 = 4 * 1.25 * (T2 - 200)
500 = 5 * (T2 - 200)
100 = T2 - 200
=> T2 = 100 + 200 = 300 K
The new final temperature of the unknown substance is 300K.
The resistance is increased when more and more bulbs are added to the circuit.
Answer with Step-by -step explanation:
We are given that
b.
below the positive x-axis
Therefore, the angle made by vector A in counter clockwise direction when measure from positive x-axis=
x-component of vector A=
y-Component of vector A=
Magnitude of vector B=86 m
The vector B makes angle with positive x- axis=
x-component of vector B=
y-Component of vector B=
Vector A=
Vector B=
Vector C=A+B
Substitute the values


c.Direction=
The direction of the vector C=21.5 degree
Answer: If the forces on an object are balanced, the net force is zero. If the forces are unbalanced forces, the effects don't cancel each other. Any time the forces acting on an object are unbalanced, the net force is not zero, and the motion of the object changes.