The magnetic field lines due to a straight, current-carrying wire are circular.
<u>Explanation:</u>
The concepts of Electromagnetism brought a new revolution to the science world. The idea is the source of many new modes of power and machines that reduces the manual work. Motors are the best example of machines that run on the concepts of electromagnetism. So the concept is that a current-carrying conductor induces a magnetic field in its nearby premise.
This magnetic field can perceive by the magnetic line of forces. Now, if we pour some iron dust around a current-carrying conductor, we'll see a concentric circular pattern around the straight wire whose centre will be at the conductor axis. The pattern of these magnetic lines of force may deflect with the variation of current in the wire but remain in the circular format.
Answer: D) All of the above
Explanation:
(b) Always act on the different bodies in opposite directions
Answer:
Introducing a dielectric into a capacitor decreases the electric field, which decreases the voltage, which increases the capacitance.
Explanation:
A dielectric (or dielectric material) is an electrical insulator that can be polarized by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor but only slightly shift from their average equilibrium positions causing dielectric polarization
Types of dielectric material
Ceramic, Mica paper glass