Answer:In physics, motion is defined as a change in the position of a body with respect to a reference point. ... Think about the motion of three cars: one in the fast-moving carpool lane, another in the middle lane, and the third in the slow lane used to enter or exit the freeway.
Explanation:
The efficiency of an ideal Carnot heat engine can be written as:

where

is the temperature of the cold region

is the temperature of the hot region
For the engine in our problem, we have

and

, so the efficiency is
Answer:
The distance by the ball clear the crossbar is 1.15 m
Explanation:
Given that,
Distance = 44 m
Speed = 24 m/s
Angle = 31°
Height = 3.05 m
We need to calculate the horizontal velocity
Using formula of horizontal velocity

Put the value into the formula


We need to calculate the vertical velocity
Using formula of vertical velocity

Put the value into the formula


We need to calculate the time
Using formula of time

Put the value into the formula


We need to calculate the vertical height
Using equation of motion

Put the value into the formula


We need to calculate the distance by the ball clear the crossbar
Using formula for vertical distance

Put the value of h


Hence, The distance by the ball clear the crossbar is 1.15 m
Answer:
Real image
Explanation:
The picture is real, but it is reversed and tiny. An picture generated by a pinhole camera has certain features. As compared item, the image created by a pinhole camera is normally pretty small and looks reversed both on the vertically and horizontally axis.