1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ollegr [7]
3 years ago
5

A rocket sled for testing equipment under large accelerations starts at rest and accelerates according to the expression a = (3.

6 m/s 3 )t + (5.6 m/s 2 ). How far does the sled move in the time interval t = 0 to t = 1.6 s ? Answer in units of m.
Physics
1 answer:
mash [69]3 years ago
5 0

Answer:

9.6 m

Explanation:

This is a  case of motion under variable acceleration . So no law of motion formula will be applicable here. We shall have to integrate the given equation .

a = 3.6 t + 5.6

d²x / dt² = 3.6 t + 5.6

Integrating on both sides

dx /dt = 3.6 t² / 2 + 5.6 t + c

where c is a constant.

dx /dt = 1.8  t²  + 5.6 t + c

when t = 0 , velocity dx /dt is zero

Putting these values in the equation above

0 = 0 +0 + c

c = 0

dx /dt = 1.8  t²  + 5.6 t

Again integrating on both sides

x = 1.8 t³ / 3 + 5.6 x t² /2 + c₁

x = 0.6 t³  + 2.8  t²  + c₁

when t =0,  x = 0

c₁ = 0

x = 0.6 t³  + 2.8  t²  

when t = 1.6

x = .6 x 1.6³ + 2.8 x 1.6²

= 2.4576 + 7.168

= 9.6256

9.6 m

You might be interested in
If energy cannot be created or destroyed, where does it go?
blondinia [14]
It transfers and changes into different types of energy, this is why the ground feels hot when something moves fast over it.
3 0
3 years ago
Read 2 more answers
HELP ME PLEASE!!!!!!!!!
Stolb23 [73]

As per the given Figure attached here we know that both charges q1 and q2 will apply same force on charge q3 and hence the resultant force due to both charges will be along Y axis vertically upwards

So here we know that

F = \frac{kq_1q_3}{d_{13}^2}

now from the above equation

F = \frac{(9\times 10^9)(2\times 10^{-6})(4 \times 10^{-6})}{0.5^2}

F = 0.288 N

so both of the charges will apply 0.288 N force on q3 charge along the line joining them

now the net force due to vector sum is given by

F_{net} = 2Fcos\theta

here we know that angle is

\theta = 37 degree

now we have

F_{net} = 2\times 0.288 cos37

F_{net} = 0.46 N

so net force on q3 is 0.46 N vertically upwards along +Y axis

6 0
3 years ago
Someone help please.....
Westkost [7]

Answer:

0.0928km/min (4dp)

Explanation:

To find the jogger's speed in km per minute, we just need to divide the number of km jogged by the time in minutes it took to jog that distance. This will give us the distance they jogged every minute which is their speed.

4km in 32 minutes:

4/32 = 0.125km/min

2km in 22 minutes:

2/22 = 0.091 (3dp)km/min

1km in 16 minutes:

0.0625km/min

Now to find the average speed of these 3 speeds, we just add them all together and divide by how many values there are (3 values).

Average (mean)  = \frac{0.125+0.091+0.0625}{3}

Average = 0.2785/3

Average speed of jogger = 0.0928 (4dp) km/min

Hope this helped!

8 0
3 years ago
The mass of a basketball is three times greater than a softball. Compare the momentum’s of a softball and a basketball if they b
ella [17]
<span>The momentum of the basketball is three times that of the softball. Momentum equals mass times velocity. Therefore, if the basketball and softball are moving at the same velocity, and the basketball has three times the mass of the softball, the basketball has three times the momentum of the softball.</span>
3 0
3 years ago
Notice that all the initial spring potential energy was transformed into gravitational potential energy. If you compressed the s
Nostrana [21]

<u><em>The  question doesn't provide enough data to be solved, but I'm assuming some magnitudes to help you to solve your own problem</em></u>

Answer:

<em>The maximum height is 0.10 meters</em>

Explanation:

<u>Energy Transformation</u>

It's referred to as the change of one energy from one form to another or others. If we compress a spring and then release it with an object being launched on top of it, all the spring (elastic) potential energy is transformed into kinetic and gravitational energies. When the object stops in the air, all the initial energy is now gravitational potential energy.

If a spring of constant K is compressed a distance x, its potential energy is

\displaystyle P_E=\frac{Kx^2}{2}

When the launched object (mass m) reaches its max height h, all that energy is now gravitational, which is computed as

U=mgh

We have then,

U=P_E

\displaystyle mgh=\frac{Kx^2}{2}

Solving for h

\displaystyle h=\frac{Kx^2}{2mg}

We have little data to work on the problem, so we'll assume some values to answer the question and help to solve the problem at hand

Let's say: x=0.2 m (given), K=100 N/m, m=2 kg

Computing the maximum height

\displaystyle h=\frac{(100)0.2^2}{2(2)(9.8)}

\displaystyle h=\frac{4}{39.2}=0,10\ m

The maximum height is 0.10 meters

8 0
3 years ago
Other questions:
  • A small car and a large truck are both driving south at 40 km/h. Which of the following is true?
    15·1 answer
  • A parallel-plate capacitor is constructed of two square plates, size L x L, separated by distance d. The plates are given charge
    8·1 answer
  • What does the statement “10 m/s to the north” describe? A. time B. velocity
    7·2 answers
  • What units should be used when measuring the mass of a lady bug?
    13·1 answer
  • A violin has a string of length
    10·2 answers
  • The half-life of Cs-137 is 30.2 years. If the initial mass of the sample is 1.00 kg, how much will remain after 151 years?
    13·2 answers
  • 1. How far away must you be from a 675 kHz radio station with power 50.0 kW for there to be only one photon per second per squar
    10·1 answer
  • What are the conditions under which the resultant of three coplanar forces is zero?<br>​
    11·1 answer
  • The velocity of an ocean wave is 5m/s. The distance between crests is 3m. What is the frequency of the wave
    7·1 answer
  • a force of 1.35 newtons is required to accelerate a book by 1.5 meters/second2 along a frictionless surface. what is the mass of
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!