Answer:
w = vR/3
Explanation:
The centre of mass of the loop to bullet system is given by D / 4 from centre of loop, which is equivalent to R / 2 from its centre.
From the principle of conservation of linear momentum
, we have
m*v = 2*m* Vcm
Where v = velocity of bullet, Vcm = velocity of wood
Hence, we have
Vcm = v2
Also, from the conservation of angular momentum about the centre of mass.
M*V*(R/2) = Ic*w - equation (I)
where Ic = moment of inertia and w = angular velocity
Ic for a ring is given by
Ic of a bullet is given by
Hence, the moment of inertia of the system is given by the summation of the two moments of inertia Ic(ring) + Ic(bullet) which gives
Ic(system) = 
Substituting back into equation (I), we have

Hence, we obtain w =vR/3
w=v3R
Answer: Option (b) is correct.
Explanation:
Since we know that,
P = VI
where;
P = power
V= Voltage
I = Current
Since it's given that,
P = 600W
I = 2.5 A
equating these values in the above equation, we get;
<em>V =
</em>
<em>V = 240 V</em>
ANSWER:
(a) 1036 N
(b) -1036 N
(c) 2590 N
STEP-BY-STEP EXPLANATION:
Given:
Mc = 1400 kg
Mt = 560 kg
a = 1.85 m/s^2
(a)
Force by car on trailer:

(b)

(c)
Answer:
17.54N in -x direction.
Explanation:
Amplitude (A) = 3.54m
Force constant (k) = 5N/m
Mass (m) = 2.13kg
Angular frequency ω = √(k/m)
ω = √(5/2.13)
ω = 1.53 rad/s
The force acting on the object F(t) = ?
F(t) = -mAω²cos(ωt)
F(t) = -2.13 * 3.54 * (1.53)² * cos (1.53 * 3.50)
F(t) = -17.65 * cos (5.355)
F(t) = -17.57N
The force is 17.57 in -x direction
Answer:
Explanation:
27dB = 2.7 B
So I / I₀ = 10⁻²°⁷ , I₀ is intensity of main sound and I is intensity after reduction.
= 1.99 X 10⁻³
So intensity will reduce by 1.99 X 10⁻³ .