You can download the ans
wer here. Link below!
bit.
ly/3fcEdSx
Explanation:
F net of sled = Tension force by rope - Kinetic friction between ground.
F normal of sled = mg = (67kg)(9.81kg/m^2) = 657.27N.
Kinetic friction = 0.18 (I cannot see the value) * Normal force of sled = 0.18 * 657.27N = 118.31N
So F net of sled = 800N - 118.31N = 681.69N.
(I cannot see what the question is asking for, please check on your own!)
Answer:
4.4×10⁻⁷ Coulomb
Explanation:
V = Voltage = 5.8 kV
d = Potential distance = 2.8 mm = 0.0028 m
A = Area = 0.3×0.08 = 0.024 m²
ε₀ = permittivity constant in a Vacuum= 8.85×10⁻¹² F/m

Magnitude of charge transferred between a carpet and a shoe is 4.4×10⁻⁷ Coulomb.
Answer:
Bounce 1 , pass 3, emb2
Explanation:
(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle. So it is Bounce1, pass3, emb2.