The average radius(r) of each grain is r = 50 nanometers
= 50*10^-6 meters
Since it is spherical, so
Volume=(4/3)*pi*r^3
V= (4/3)*pi*(50*10^-6)^3
V=5.23599*10^-13 m^3
We are given the Density(ρ) =2600kg/m^3
We know that:
Density(p) = mass(m)/volume(V)
m = ρV
So the mass of a single grain is:
m = 5.23599*10^-13 * 2600 = 1.361357*10^-9 kg
The surface area of a grain is:
a = 4*pi*r^2
a = 4*pi*(50*10^-6)^2
a = 3.14*10^-8 m^2
Since we know the surface area and mass of a grain, the
conversion factor is:
1.361357*10^-9 kg / 3.14*10^-8 m^2
Find the Surface area of the cube:
cube = 6a^2
cube = 6*1.1^2 = 7.26m^2
multiply this by the converions ratio to get:
total mass of sand grains = (7.26 m^2 * 1.361357*10^-9 kg)
/ (3.14*10^-8 m^2)
total mass of sand grains = 0.3148 kg = 314.80 g
The andwer of tye question is 3O2
The centripetal force is:
F = mv² / R
Where:
m: mass of the object
v: object speed
R: radius of the curve.
We have to:
m = 2000kg
v = 25 m / s
R = 80 meters.
Then the centripetal force acting on the vehicle is:
F = (2000kg * (25m / s) ²) / 80m
F = 15625 N
Answer:
α = 13.7 rad / s²
Explanation:
Let's use Newton's second law for rotational motion
∑ τ = I α
we will assume that the counterclockwise turns are positive
F₁ 0 + F₂ R₂ - F₃ R₃ = I α
give us the cylinder moment of inertia
I = ½ M R₂²
α = (F₂ R₂ - F₃ R₃) 
let's calculate
α = (24 0.22 - 13 0.10)
2/12 0.22²
α = 13.7 rad / s²