The distance of the canoeist from the dock is equal to length of the canoe, L.
<h3>
Conservation of linear momentum</h3>
The principle of conservation of linear momentum states that the total momentum of an isolated system is always conserved.
v(m₁ + m₂) = m₁v₁ + m₂v₂
where;
v is the velocity of the canoeist and the canoe when they are together
- u₁ is the velocity of the canoe
- u₂ velocity of the canoeist
- m₁ mass of the canoe
- m₂ mass of the canoeist
<h3>Distance traveled by the canoeist</h3>
The distance traveled by the canoeist from the back of the canoe to the front of the canoe is equal to the length of the canoe.
Thus, the distance of the canoeist from the dock is equal to length of the canoe, L.
Learn more about conservation of linear momentum here: brainly.com/question/7538238
Density = (mass) divided by (volume)
We know the mass (2.5 g). We need to find the volume.
The penny is a very short cylinder.
The volume of a cylinder is (π · radius² · height).
The penny's radius is 1/2 of its diameter = 9.775 mm.
The 'height' of the cylinder is the penny's thickness = 1.55 mm.
Volume = (π) (9.775 mm)² (1.55 mm)
= (π) (95.55 mm²) (1.55 mm)
= (π) (148.1 mm³)
= 465.3 mm³
We know the volume now. So we could state the density of the penny,
but nobody will understand what we have. Here it is:
mass/volume = 2.5 g / 465.3 mm³ = 0.0054 g/mm³ .
Nobody every talks about density in units of ' gram/(millimeter)³ ' .
It's always ' gram / (centimeter)³ '.
So we have to convert our number for the volume.
(0.0054 g/mm³) x (10 mm / cm)³
= (0.0054 x 1,000) g/cm³
= 5.37 g/cm³ .
This isn't actually very close to what the US mint says for the density
of a penny, but it's in a much better ball park than 0.0054 was.
Answer: 1.d) The acceleration of an object is always less than the acceleration due to gravity, g (9.81m/s^-2)
2.a)acceleration decreases
Explanation:
Newton's second law:
Newton's second law states that the acceleration of an object is defined by two variables which is the total force acting on the object and the mass of that object. The acceleration is directly proportional to the net force that is applied on an object and inversely proportional to the mass of that object.
When the force applied on an object is increased so does the acceleration of an object however if the mass increase the acceleration decreases.
This can be felt when you look at the truck which usually carry heavy loads they seem to drive slow due to the load hence their acceleration is decreased by the mass that these truck carry .
Answer: All isotopes of a given element have the same number of protons but different numbers of neutrons in each atom. ... Each atomic number identifies a specific element, but not the isotope; an atom of a given element may have a wide range in its number of neutrons.
Explanation: Hopefully this helps. Have a great day.
Answer: 500 Watts
Explanation:
Power
is the speed with which work
is done. Its unit is Watts (
), being
.
Power is mathematically expressed as:
(1)
Where
is the time during which work
is performed.
On the other hand, the Work
done by a Force
refers to the release of potential energy from a body that is moved by the application of that force to overcome a resistance along a path. It is a scalar magnitude, and its unit in the International System of Units is the Joule (like energy). Therefore, 1 Joule is the work done by a force of 1 Newton when moving an object, in the direction of the force, along 1 meter (
).
When the applied force is constant and the direction of the force and the direction of the movement are parallel, the equation to calculate it is:
(2)
In this case, we have the following data:



So, let's calculate the work done by Peter and then find how much power is involved:
From (2):
(3)
(4)
Substituting (4) in (1):
(5)
Finally: