U=1/2kx2
This image sums it up
Answer:
When you lift the ball, you are doing work to increase its gravitational potential energy. When you then release the ball, gravitational energy is transformed into kinetic energy as the ball falls. When the ball hits the floor, the ball's shape changes as it flattens against the floor.
Explanation:thats should be the way^^ in explaining
Answer: 50π m ≈ 157 m
Explanation:
100 rev/min (2π rad/rev) / (60 sec/min) = 3⅓π rad/s
d = ωrt = 3⅓π(0.50)(30) = 50π m ≈ 157 m
Answer:
P₁ = 2.3506 10⁵ Pa
Explanation:
For this exercise we use Bernoulli's equation and continuity, where point 1 is in the hose and point 2 in the nozzle
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
A₁ v₁ = A₂ v₂
Let's look for the areas
r₁ = d₁ / 2 = 2.25 / 2 = 1,125 cm
r₂ = d₂ / 2 = 0.2 / 2 = 0.100 cm
A₁ = π r₁²
A₁ = π 1.125²
A₁ = 3,976 cm²
A₂ = π r₂²
A₂ = π 0.1²
A₂ = 0.0452 cm²
Now with the continuity equation we can look for the speed of water inside the hose
v₁ = v₂ A₂ / A₁
v₁ = 11.2 0.0452 / 3.976
v₁ = 0.1273 m / s
Now we can use Bernoulli's equation, pa pressure at the nozzle is the air pressure (P₂ = Patm) the hose must be on the floor so the height is zero (y₁ = 0)
P₁ + ½ ρ v₁² = Patm + ½ ρ v₂² + ρ g y₂
P₁ = Patm + ½ ρ (v₂² - v₁²) + ρ g y₂
Let's calculate
P₁ = 1.013 10⁵ + ½ 1000 (11.2² - 0.1273²) + 1000 9.8 7.25
P₁ = 1.013 10⁵ + 6.271 10⁴ + 7.105 10⁴
P₁ = 2.3506 10⁵ Pa