(a)- Time
(b)- Heat produced(i guess)
(c)- Material
this is what I think, hope it helps
Answer: The value of the equilibrium constant Kc for this reaction is 3.72
Explanation:
Equilibrium concentration of
= 
Equilibrium concentration of
= 
Equilibrium concentration of
= 
Equilibrium concentration of
= 
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as
For the given chemical reaction:
The expression for
is written as:
Thus the value of the equilibrium constant Kc for this reaction is 3.72
To calculate the average mass of the element, we take the summation of the product of the isotope and the percent abundance. In this case, the equation becomes 186.207=187*0.626+185*x where x is the percent abundance of 185. The answer is 0.374 or 37.4%. This can also be obtained by 100%-62.6%= 37.4%.
Within the core of the Sun, temperatures and pressures are high enough to fuse hydrogen atoms into helium, which is the Sun's main form of energy production. Assuming there was a slight mistake in where you have copied the results here the correct answer is the third option.
Hope this helps!