A)
NH⁴⁺(aq) + H₂O(l) ⇌ NH₃(aq) + H₃0⁺<span>(aq)
- acid </span>a species that able to donate (H+): NH⁴⁺
- base a species that is able to accept a proton (H+): H₂O
- conjugate base a species formed when acid donates a proton (H+): NH₃
- conjugate acid a species formed by a base accepts a proton (H+): H₃0⁺
b)
CN⁻(aq) + H₂O(l) ⇌ HCN(aq) + OH⁻(aq)
- base a species that is able to accept a proton (H+): CN⁻
- acid a species that able to donate (H+): H₂O
- conjugate acid a species formed by a base accepts a proton (H+): HCN
- conjugate base a species formed when acid donates a proton (H+): OH⁻
Answer:
It's nitrogen
Explanation:
cuz it has valence 3 and a diatomic gas at room temperature
Answer:
The molar mass is determined by applying the Ideal Gas Law, PV = nRT, where P is the pressure (in atm), V is the volume (in L), n is the number of moles of gas, R is the universal gas constant (0.08206 L∙atm/mol∙K), and T is the temperature (in K).
Hope this helps! :)
Answer:
It is Though the transfer of charges from one object to another, or (A).
Active sites in enzymes are where substrates bind. Once they bind, a catalytic reaction occurs as a complex between substrate and enzyme is formed. Enzymes are termed as biocatalysts or simply catalysts since they speed up the catalytic reaction. After the reaction, they simply revert back to their original form, after having adjusted to fit with substrate.