Answer: Statements (A), and (C) are correct.
Explanation:
The statements that are true are as follows.
- Particles in a liquid need to move more slowly in order to freeze.
When a liquid freezes the molecules get attracted towards each other. This attraction of particles occurs slowly. Hence, this statement is true.
- Attractive forces between the particles in a liquid are broken when a liquid boils.
When temperature is raised, the molecules in a liquid gains kinetic energy and start to move quickly in random directions. As a result, liquid state changes to gaseous state. Hence, this statement is true.
If the attractive force between gas molecules have to be increased, they should be moving slower instead because moving faster does not help attracting molecules together.
Hence, the statement particles in gas move fast enough to make more attractive forces when the gas condenses is not true.
It's lone a little distinction (103 degrees versus 104 degrees in water), and I trust the standard rationalization is that since F is more electronegative than H, the electrons in the O-F bond invest more energy far from the O (and near the F) than the electrons in the O-H bond. That moves the powerful focal point of the unpleasant constrain between the bonding sets far from the O, and thus far from each other. So the shock between the bonding sets is marginally less, while the repugnance between the solitary matches on the O is the same - the outcome is the edge between the bonds is somewhat less.
First, we have to get:
1- The heat required to increase T of ice from -50 to 0 °C:
according to q formula:
q1 = m*C*ΔT
when m is the mass of ice = mol * molar mass
= 1 mol * 18 mol/g
= 18 g
and C is the specific heat capacity of ice = 2.09 J/g-K
and ΔT change in temperature = 0- (-50) = 50°C
by substitution:
∴q1 = 18 g * 2.09 J/g-K *50°C
= 1881 J = 1.881 KJ
2- the heat required to melt this mass of ice is :
q2 = n*ΔHfus
when n is the number of moles of ice = 1 mol
and ΔHfus = 6.01 KJ/mol
by substitution:
q2 = 1 mol * 6.01 KJ/mol
= 6.01 KJ
3- the heat required to increase the water temperature from 0°C to 60 °C is:
q3 = m*C*ΔT
when m is the mass of water = 18 g
C is the specific heat capacity of water = 4.18 J/g-K
ΔT is the change of Temperature of water = 60°C - 0°C = 60°C
by substitution:
∴q3 = 18 g * 4.18 J/g-K * 60°C
= 4514 J = 4.514 KJ
∴the total change of enthalpy = q1+q2+q3
= 1.881 KJ +6.01 KJ + 4.514 KJ
= 12.405 KJ
Answer:
중요하지 않은 것들의 예로는 생각, 감정, 빛, 에너지가 있습니다. ... 에너지 : 빛, 열, 운동 및 위치 에너지, 소리는 질량이 없기 때문에 물질이 아닙니다. 사물
Explanation:
Energy: Light, heat, kinetic and potential energy, and sound are non-matter because they are massless. Objects that have mass and are matter may emit energy.
Answer:
you will run 720 meters
Explanation:
because 4 times 60 is 240 and 240 times 3 is 720