Answer:
B. CA, 14
Explanation:
Atoms of elements contain small particles known as electrons, neutrons, and protons. The nucleus of an atom is made up of neutrons and protons which are at the center of the atom. Electrons on the other hand surrounds the nucleus. Electron has negative charge while proton has a positive charge. The number of neutrons is equivalent to the number of protons . In addition, the number of protons is equal to mass number minus the number of electrons.
For the compound
, it can be broken down into
and
. Its ion has a mass of 34 and 18 electrons which means it has already lost 2 electrons.
Therefore:
For the given element, the number of electrons is 18+2 = 20 electrons.
The number of protons = 34 - 20 = 14.
And the number of neutrons is 14.
Only option B has the correct answer.
This question asks to compare the energy emitted by a piece of iron at T = 603K with the energy emitted by the same piece at T = 298K.
Then you need to use the Stefan–Boltzmann Law
That law states that energy emitted (E) is proportional to fourth power of the to the absolute temperature (T), this is E α T^4 (the sign α is used to express proportionallity.
Then E (603) / E (298) = [603K / 298K]^4 = 16,8
Which meand that the Energy emitted at 603 K is 16,8 times the energy emitted at 298K.
Answer:
They did not have accurate data and information.
Answer:
Because the Calvin cycle is dependent on the the product from light reaction.
Explanation:
The Calvin cycle is the light independent phase of photosynthesis during which carbon is fixed. This step requires energy generated during the light dependent phase of the photosynthesis.
Hence, if the light dependent reaction does not occur, the required energy to drive carbon fixation will be lacking and the Calvin cycle will not be able to proceed.