Answer:
0.416 mol CaBr₂
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
83.1 g CaBr₂
<u>Step 2: Identify Conversions</u>
Molar Mass of Ca - 40.08 g/mol
Molar mass of Br - 79.90 g/mol
Molar Mass of CaBr₂ - 40.08 + 2(79.90) = 199.88 g/mol
<u>Step 3: Convert</u>
<u />
= 0.415749 mol CaBr₂
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
0.415749 mol CaBr₂ ≈ 0.416 mol CaBr₂
The class of compounds that ammonia belongs to is it is categorized as a basic compound. As it posses a pH value or rating above 7, which is characteristic of basic substances, solutions.
The formula for solving current given with resistance and power source or voltage is shown below:
I = V/R
When two 5 ohms resistors are in series, we have:
I = 9 volts / (5+5 ohms)
I = 0.9 amperes
When it is being added with another 7.5 resistors, we have:
I = 9 volts / (5+5+7.5 ohms)
I = 0.529 ampere
The answer to the question is the letter "D. decrease; 0.51 amps".
42cubic centimeter are in the block
volume is 48
Answer:
The mass of water is 36 g.
Explanation:
Mass of hydrogen = 4 g
Mass of water = ?
Solution:
First of all we will write the balance chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen = mass / molar mass
Number of moles of hydrogen = 4 g/ 2 g/mol
Number of moles of hydrogen = 2 mol
Now we compare the moles of water with hydrogen from balance chemical equation.
H₂ : H₂O
2 : 2
Mass of water = moles × molar mass
Mass of water = 2 mol × 18 g/mol
Mass of water = 36 g
If the water oxygen is in excess than mass of water would be 36 g.