Answer:
D is the answer to this problem
Answer:
A. 266g/mol
Explanation:
A colligative property of matter is freezing point depression. The formula is:
ΔT = i×Kf×m <em>(1)</em>
Where:
ΔT is change in temperature (0°C - -0,14°C = 0,14°C)i is Van't Hoff factor (1 for a nonelectrolyte dissolved in water), kf is freezing point molar constant of solvent (1,86°Cm⁻¹) and m is molality of the solution (moles of solute per kg of solution). The mass of the solution is 816,0g
Replacing in (1):
0,14°C = 1×1,86°Cm⁻¹× mol Solute / 0,816kg
<em>0,0614 = mol of solute</em>.
As molar mass is defined as grams per mole of substance and the compound weights 16,0g:
16,0g / 0,0614 mol = 261 g/mol ≈ <em>A. 266g/mol</em>
I hope it helps!
Answer:- HBr is limiting reactant.
Solution:- The given balanced equation is:

From this equation, There is 2:6 mol or 1:3 mol ratio between Al and HBr. Since we have 8 moles of each, HBr is the limiting reactant as we need 3 moles of HBr for each mol of Al.
The calculations could be shown as:

= 24 mol HBr
From calculations, 24 moles of HBr are required to react completely with 8 moles of Al but only 8 moles of it are available. It clearly indicates, HBr is limiting reactant.
<span>Divide the number of grams present in the sample by copper's gram atomic weight to find the number of gram atomic weights present. Then multiply that result by Avogadro's Number: 6.022137 x 10^23 atoms/gram atomic weight.1,200 g/(63.54 g/gram atomic weight) ? 18.885741 gram-atomic weights. Hope this helps. </span>