<span>Friction – the force that acts to resist the relative motion (or attempted motion) of objects or materials that are in contact
</span><span>Acceleration – the change in velocity per certain time interval; how quickly motion changes</span>
<span>Net Force – the combination of all the forces that act on an object
</span>Isaac Newton<span>’s Second Law of Motion (F=ma) explains the relationship between force and acceleration in motion. The application of force on an object causes an acceleration of that object. Yet, force is not the only factor in the movement, or acceleration of an object. The two main influences on the acceleration of an object are net force and mass. For example, net force is directly proportional to acceleration while mass is inversely proportional to acceleration. In other words, net force- the force that has overcome friction and accelerates an object- is directly linked to acceleration; the more force you have, the faster an object goes.Other factors such as the friction, air or fluid resistance, and pressure effect the acceleration as well. All of these factors do not work against or in accordance with acceleration in the same way. Friction works in opposition to acceleration. Friction involves two objects that are in direct contact with on another but are moving in different directions. Involved with friction is air and fluid resistance. Fluid resistance, such as liquids or gases, focuses on when the object is moving in the opposite direction of a fluid flow or through a dense area of fluid. Air resistance involves movement through the air. The most noticeable effect of air resistance is when and object travels into a strong breeze or wind. And finally pressure, pressure refers to an applied force. With pressure you will find that the overall weight of and object doesn’t change no matter how you stand or lay it but you will fill more pressure from that same object depending on the force per surface area. The weight of the object has not changed but you that area of application the force feels greater. That is the pressure increase. In Newton’s Second Law, the areas such as free falling verse vacuum suction are also compared with the falling of objects.
</span>
Answer:
Explanation:
Use the one-dimensional equation:
which says that the final velocity of a falling object is equal to its initial velocity times the acceleration of gravity times the time it takes to fall. We have the final velocity, -14.5 (negative because its direction is down and down is negative), initial velocity is 0 (because it was held still by someone before it was dropped), and acceleration is -9.8 (negative again, because direction is down while acceleration increases). Filling in:
-14.5 = 0 - 9.8t and
-14.5 = -9.8t so
t = 1.5 seconds
Answer:
a. keeps its speed for a short while, then slows and stops. slows steadily until it stops.
Explanation:
Since the tension in the rope, t is greater than the kinetic friction fk, the box is moving forward because there is a net force on it. That is, t - fk = f = ma.
Since there is a net force, there is an acceleration and thus an increasing velocity.
When the rope breaks, the tension, t = 0. So, t - fk = 0 - fk = -fk = ma'.
Now, the net force acting on the box is friction in the opposite direction. This force tends to slow the box down from its initial velocity at acceleration, 'a' until its velocity is zero, where it stops. Since the frictional force is constant, the acceleration, a' on the box is thus constant and the box undergoes uniform deceleration until its velocity is zero.
<u>So, the box keeps its speed for a short while, then slows and stops. slows steadily until it stops.</u>
So, the answer is a.
Answer:
Two objects that are the same volume will displace the same amount of water even if they have different masses.
Answer:
The quantity of heat given to body depends on: (i) The mass of the body, (ii) The rise (or fall) in the temperature of the body, and (iii) Nature of the material of the body.
Explanation:
Hope this helps
have a great day
~Zero