Answer:
The initial velocity of the gymnast is 8.5 m/s.
Explanation:
We can use the kinematic equation

to figure out the initial velocity
of the gymnast.
Now, when the gymnast reaches the maximum height, the distance he has traveled is
, and his velocity is zero; therefore
.
Thus, we have



Answer:
Approximately
, assuming that
.
Explanation:
Let
denote the time required for the package to reach the ground. Let
and
denote the initial and final height of this package.
.
For this package:
- Initial height:
. - Final height:
(the package would be on the ground.)
Solve for
, the time required for the package to reach the ground after being released.
.
.
Assume that the air resistance on this package is negligible. The horizontal ("forward") velocity of this package would be constant (supposedly at
.) From calculations above, the package would travel forward at that speed for about
. That corresponds to approximately:
.
Hence, the package would land approximately
in front of where the plane released the package.
when an object is revolving in circular path then its velocity is always along the tangent of the circular path
so while moving in circular path if the string is break then due to law of inertia the object will always move in the direction of initial motion
As we know that as per law of inertia if an object will not change its state of motion or state of rest until some external force will act on it.
So here also the object will move along its tangential direction once the string will break
so here the correct path will be
Option B
Let's see..
- Melting
-Evaporation.
Two.