Answer:
I believe it would be Direction B
Explanation:
After passing A, gravity would pull the ball downwards
Answer:
5.33*10^-3 seconds
Explanation:
c = d/t
c = speed of light constant (3.0*10^5 km/s)
d = distance (1600 km)
t = ?
3.0*10^5 = 1600/t
t = 1600/3.0*10^5
t = 5.33*10^-3 seconds
I hope this helped! :)
To solve this problem it is necessary to apply the concepts related to the Third Law of Kepler.
Kepler's third law tells us that the period is defined as

The given data are given with respect to known constants, for example the mass of the sun is

The radius between the earth and the sun is given by

From the mentioned star it is known that this is 8.2 time mass of sun and it is 6.2 times the distance between earth and the sun
Therefore:


Substituting in Kepler's third law:






Therefore the period of this star is 3.8years
Answer:
The normal force will be "122.8 N".
Explanation:
The given values are:
Weight,
W = 100 N
Force,
F = 40 N
Angle,
θ = 35.0°
As we know,
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
⇒ 