1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katrin [286]
3 years ago
10

astronauts in space cannot weigh themselves by standing on a bathroom scale. Instead, they determine their mass by oscillating o

n a large spring. Suppose an astronaut attaches one end of a large spring to her belt and the other end to a hook on the wall of the space capsule. A fellow astronaut then pulls her away from the wall and releases her. The spring's length as a
Physics
1 answer:
devlian [24]3 years ago
4 0

Answer:

The right answer is:

(a) 63.83 kg

(b) 0.725 m/s

Explanation:

The given query seems to be incomplete. Below is the attachment of the full question is attached.

The given values are:

T = 3 sec

k = 280 N/m

(a)

The mass of the string will be:

⇒ T=2 \pi\sqrt{\frac{m}{k} }

or,

⇒ m=\frac{k T^2}{4 \pi^2}

On substituting the values, we get

⇒     =\frac{280\times (3)^2}{4 \pi^2}

⇒     =\frac{280\times 9}{4\times (3.14)^2}

⇒     =68.83 \ kg

(b)

The speed of the string will be:

⇒  \frac{1}{2}k(0.4)^2=\frac{1}{2}k(0.2)^2+\frac{1}{2}mv^2

then,

⇒             v=\sqrt{\frac{k((0.4)^2-(0.2)^2)}{m} }

On substituting the values, we get

⇒                =\sqrt{\frac{280\times ((0.4)^2-(0.2)^2)}{63.83} }

⇒                =\sqrt{\frac{280(0.16-0.04)}{63.83} }

⇒                =\sqrt{\frac{280\times 0.12}{63.83} }

⇒                =0.725 \ m/s

You might be interested in
What is the rate of change of an object’s velocity per unit of time known as?
irga5000 [103]
The rate of change of object's velocity per unit of time is known as acceleration.

Hope this helps you.
6 0
3 years ago
Read 2 more answers
A 200 g hockey puck is launched up a metal ramp that is inclined at a 30° angle. The coefficients of static and kinetic friction
nikitadnepr [17]

Answer:

71.76 m

Explanation:

We will solve this question using the work energy theorem.

The theorem explains that, the change in kinetic energy of a particle between two points is equal to the workdone in moving the particle from the one point to the other.

ΔK.E = W

In the attached free body diagram for the question, the forces acting on the puck are given.

ΔK.E = (final kinetic energy) - (initial kinetic energy)

Final kinetic energy = 0 J (since the puck comes to a stop)

Initial kinetic energy = (1/2)(m)(v²) = (1/2)(0.2)(26²) = 67.6 J

ΔK.E = 0 - 67.6 = - 67.6 J

W = Workdone between the starting and stopping points = (work done by the force of gravity) + (work done by frictional force)

Work done by the force of gravity = - mgh = - (0.2)(9.8)(h) = - 1.96 h

Workdone by the frictional force = F × d

F = μ N

μ = coefficient of kinetic friction = 0.30 (kinetic frictional force is the only frictional force that moves a distance of d, the static frictional force doesn't move any distance, so it does no work)

N = normal reaction of the plane surface on the puck = mg cos 30° = (0.2)(9.8)(0.866) = 1.697 N

F = μ N = 0.3 × 1.697 = 0.509 N

where d = distance along the incline that the puck travels.

d = h/sin 30° = 2h (from trigonometric relations)

Workdone by the frictional force = F × d = 0.509 × 2h = 1.02 h

ΔK.E = W = (work done by the force of gravity) + (work done by frictional force)

- 67.6 = - 1.96h + 1.02h

-0.942h = - 67.6

h = 71.76 m

6 0
3 years ago
Q|C (a) You need a 45-ω resistor, but the stockroom has only 20-ω and 50-ω resistors. How can the desired resistance be achieved
NNADVOKAT [17]
  1. In order to achieve the desired resistance under the given circumstances, we would connect two 50 Ohms resistors in parallel and then connect it in series with the 20 Ohms resistors.
  2. In order to get a 35 Ohms resistance under the given circumstances, we would connect two 50 Ohms resistors in parallel and then connect it in series with two 20 Ohms resistors that are connected in parallel.

<h3>How to achieve the desired resistance under these circumstances?</h3>

In order to achieve the desired resistance under the given circumstances, we would connect two 50 Ohms resistors in parallel and then connect it in series with the 20 Ohms resistors.

Mathematically, the total equivalence resistance of two resistors that are connected in parallel is given by:

1/Rt = 1/R₁ + 1/R₂

1/Rt = 1/50 + 1/50

1/Rt = 2/50

1/Rt = 1/25

Rt = 25 Ohms.

Next, we would connect this 25 Ohms resistor in series with the 20 Ohms resistor:

R₃ = 20 + Rt

R₃ = 20 + 25

R₃ = 45 Ohms.

<h3>Part B.</h3>

In order to get a 35 Ohms resistance under the given circumstances, we would connect two 50 Ohms resistors in parallel and then connect it in series with two 20 Ohms resistors that are connected in parallel.

1/Rt = 1/R₁ + 1/R₂

1/Rt = 1/50 + 1/50

1/Rt = 2/50

1/Rt = 1/25

Rt = 25 Ohms.

1/R't = 1/R₁ + 1/R₂

1/R't = 1/20 + 1/20

1/R't = 2/20

1/R't = 1/10

R't = 10 Ohms.

Next, we would connect the 25 Ohms resistor in series with the 10 Ohms resistor:

R₃ = 10 + Rt

R₃ = 10 + 25

R₃ = 35 Ohms.

Read more on resistors in parallel here: brainly.com/question/15121871

#SPJ4

Complete Question:

You need a 45-ω resistor, but the stockroom has only 20-ω and 50-ω resistors.

(a) How can the desired resistance be achieved under these circumstances?

(b) What can you do if you need a 35-ω resistor?

3 0
2 years ago
True or False: Global wind patterns have less to do with air temperature than local winds.
xz_007 [3.2K]

Answer:

False

Explanation:

5 0
2 years ago
Compute the ratio of the rate of heat loss through a single-pane window with area 0.15 m2 to that for a double-pane window with
Rudik [331]

Answer:

2.80321285141

Explanation:

L_g = Thickness of glass = 4.5 mm

k_g = Thermal conductivity of glass = 0.8 W/mK

R_0 = Combined thermal resistance = 0.15\times m^2K/W

L_a = Thickness of air = 6.6 mm

k_a = Thermal conductivity of air = 0.024 W/mK

The required ratio is the inverse of total thermal resistance

\dfrac{2(L_g/k_g)+R_0+(L_a/k_a)}{(L_g/k_g)+R_0}\\ =\dfrac{2(4.5\times 10^{-3}/0.8)+0.15+(6.6\times 10^{-3}/0.024)}{(4.5\times 10^{-3}/0.8)+0.15}\\ =2.80321285141

The ratio is 2.80321285141

4 0
3 years ago
Read 2 more answers
Other questions:
  • a girl skateboards with a kinetic energy of 2543.2 J. if the girl and the skateboard have a total mass of 110 kg, what is her sp
    13·1 answer
  • Longitudional waves travel through a series of ________ and ___________.
    13·1 answer
  • Two insulated copper wires of similar overall diameter have very different interiors. One wire possesses a solid core of copper,
    6·1 answer
  • Which scenario involves acceleration?
    11·1 answer
  • A body is thrown vertically upward. Its velocity keep on decreasing. What happens to its kinetic energy when it reaches the maxi
    7·1 answer
  • Your brother is insisting that you’ll never hear a sound produced behind a barrier wall at the end of your yard you notice that
    13·2 answers
  • 5.17 System of blocks acceler-<br>ates. A experiences friction. draw<br>a<br>A :<br>a<br>B​
    6·1 answer
  • What is the theory of the beginning of the Universe?​
    15·1 answer
  • How does the interstellar medium interact with stars?
    6·1 answer
  • R=1m.<br> Vt=+- 8m/s<br> atot (tan<br> √3)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!