Answer:
False
Explanation:
Think of the electric potential in terms of potential energy. If you imagine a place with high elevation (A) and another one at sea level (B), a ball will roll from high potential to low potential (A-->B).
Everything in our universe wants to reach a lower state of energy if no external force is acted upon it. Every object tends to slow down (friction), a radioactive element dissipates energy (an unstable element releases energy to get to a stable state), water in the clouds comes down to the ground (rain experiencing difference in potential energy).
Electric potential is exactly the same, you just can't see it! It flows from higher voltage (which is a synonym for electric potential) to lower voltage.
8. In soft magnetic materials such as iron, what happens when an external magnetic field is removed?
a. The domain alignment persists.
b. The orientation of domains fluctuates.
c. The material becomes a hard magnetic material.
d. The orientation of domains changes, and the material returns to an unmagnetized state.
9. According to Lenz’s law, if the applied magnetic field changes,
a. the induced field attempts to keep the total field strength constant.
b. the induced field attempts to increase the total field strength.
c. the induced field attempts to decrease the total field strength.
d. the induced field attempts to oscillate about an equilibrium value.
10. The direction of the force on a current-carrying wire in an external magnetic field is
a. perpendicular to the current only.
b. perpendicular to the magnetic field only.
c. perpendicular to the current and to the magnetic field.
d. parallel to the current and to the magnetic field
Answer:
it selects what molecules to engulf, whereas pinocytosis or phagocytosis engulf anything in the vicinity
Trust!
Answer:
the shooting angle ia 18.4º
Explanation:
For resolution of this exercise we use projectile launch expressions, let's see the scope
R = Vo² sin (2θ) / g
sin 2θ = g R / Vo²
sin 2θ = 9.8 75/35²
2θ = sin⁻¹ (0.6)
θ = 18.4º
To know how for the arrow the tree branch we calculate the height of the arrow at this point
X2 = 75/2 = 37.5 m
We calculate the time to reach this point since the speed is constant on the X axis
X = Vox t
t2 = X2 / Vox = X2 / (Vo cosθ)
t2 = 37.5 / (35 cos 18.4)
t2 = 1.13 s
With this time we calculate the height at this point
Y = Voy t - ½ g t²
Y = 35 sin 18.4 1.13 - ½ 9.8 1,13²
Y = 6.23 m
With the height of the branch is 3.5 m and the arrow passes to 6.23, it passes over the branch