The most common reaction that causes spoilage isn't a reaction at all. Molds and Bacteria are attracted to the easily found presence of water in the fruit. They find a natural place to reproduce and what they do causes spoilage.
Very few sources talk about the chemical changes that take place. If you put fruit in a refrigerator it slows the spoiling process down. That means that the chemical reaction has to be endothermic (it requires heat to occur)
The process of spoilage is speeded up by bananas for example, giving up Ethylene gas. You do not want to put a banana with tomatoes, because tomatoes are very sensitive to Ethylene. (It's OK to eat them together. They make a terrific salad. Yum).
I cannot find a definitive source that connects all this together, but the conduct of the fruit in refrigerators confirms what I am saying.
Spoilage is a very complex reaction and interaction with the environment. I have given you a hint of what happens but you should search it out to convince yourself of the outcome.
I found these four statements for that question:
Each molecule contains four different elements.
Each molecule contains three atoms.
Each molecule contains seven different bonds.
Each molecule contains six oxygen atoms.
The last one is true. Each molecule contains six oxygen atoms.
The number to the right of O and of (NO3) ares subscripts.
The chemical formula uses subscripts to indicate the number of atoms.
The subscript 2 in (NO3)2 means that there are two NO3 radicals.
And the subscript 3 to the right of O means that each NO3 radical has three atoms of O.
Then, the number of atoms of O is 2 * 3 = 6.
So, the true statement is the last one: each molecule of Ba (NO3)2 has six atoms of O.
From that molecule you can also tell:
- Each molecule contains one atom of barium
- Each molecule contains two atoms of nitrogen
- Each molecule contains two NO3 radicals
B
. They are large and occur at shallow depths near the where the plates diverge.
The sun is a star.
If you were talking about that