Answer:
Weak bonds require less energy to form than strong bonds
Explanation:
According to Coulomb's law, the force between two species is inversely proportional to the distance between them. That said, the bigger the atoms are, the greater the bond length should be to form a molecule.
As a result, for a greater bond length, the attraction force is lower than for a shorter bond length. This implies that large atoms would form weak bonds and small atoms would form strong bonds.
Bond energy is defined as the amount of energy required to break the bond. If a bond is weak, it would require a low amount of energy to break it. This is also true for energy of formation, as it's the same process taking place in the opposite direction.
Answer:
The water will eventually become the same temature (A)
Answer:
2.67 × 10⁻²
Explanation:
Equation for the reaction is expressed as:
CaCrO₄(s) ⇄ Ca₂⁺(aq) + CrO₂⁻⁴(aq)
Given that:
Kc=7.1×10⁻⁴
Kc= ![[Ca^{2+}][CrO^{2-}_4]](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%5BCrO%5E%7B2-%7D_4%5D)
Kc= [x][x]
Kc= [x²]
7.1×10⁻⁴ = [x²]
x = 
x = 0.0267
x = 
Answer:The key to remember is that carbon combustion requires oxygen. As soon as there is no oxygen left, carbon combustion stops. In nuclear fusion, the nuclei of atoms are fused together to make new, bigger nuclei.
Explanation:
Answer:
C. Scientists accepted the model at first but later rejected it.
Explanation:
Scientists accepted the model at first because it explained the hydrogen emission spectrum.
However, with the development of quantum mechanics, scientists had to modify the model (not reject it).
Electrons still had specific energies, but they no longer travelled in fixed orbits.
Instead, electrons had a probability of being found in a given region of space.