Take the attached picture of a periodic table as a guide. You are finding for a solid metal. Therefore, streamline your choices by looking at elements written in black bold letters, because they are all solid. Next, if you look at the center, the legend for metals are colors in orange, yellow, flesh, lavender, pink, and cyan blue. These region would be your choices. Next, you want to find a metal that is shiny and ductile. The shiny appearance is a common characteristic of luster by materials. Ductility is the ability of a metal to stretch when under tensile stress. These properties are best exhibited by metals in the transitions metals colored in pink. Therefore, the answer to your question would be any of the metal in the pink area. Examples are Titanium, Chromium, Gold, Silver, Platinum, Tungsten, etc.
Answer:
1. Uniform, non visible
2. Visible, non uniform
3. Uniform, non visible
4. Visible, non uniform
5. Visible, non uniform
Explanation:
A heterogeneous mixture is simply any mixture that is not uniform in composition — it's a non-uniform mixture of smaller constituent parts. By contrast, a mixture that is uniform in composition is a homogenous mixture
visible state of matter is when you can easily difference two components of a mixture
non visible is when the state of the matter in the substance is not visible to the eye, it can't be differentiated
The balanced equation for the neutralisation reaction is as follows
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of NaOH to H₂SO₄ is 2:1
the number of moles of NaOH reacted - 0.126 mol/L x 0.0173 L = 0.00218 mol
if 2 mol of NaOH reacts with 1 mol of H₂SO₄
then 0.00218 mol of NaOH reacts with - 0.00218 / 2 = 0.00109 mol of H₂SO₄
molarity is the number of moles of solute in 1 L solution
therefore if 25 mL contains - 0.00109 mol
then 1000 mL contains - 0.00109 mol / 25 mL x 1000 mL = 0.0436 mol/L
therefore molarity of H₂SO₄ is 0.0436 M
The atomic structure of the acetic acid is:
H O
l l
H –
C – C – O – H
l
H
We can see from the structure that there are 2 interior
atoms, and these are all Carbon atoms.
The geometry is:
Tetrahedral on First Carbon
Trigonal Planar on Second Carbon
When a solvent has as much of the dilute dissolved in it as possible, then it is saturated.
If you were to heat the water, its capacity would increase and would then be super-saturated because it has more dissolved in it than possible as room temp.
Since there is no heating being done, the water is just saturated.
Hope that helps!