1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marshall27 [118]
3 years ago
9

Solve A and B using energy considerations.

Physics
1 answer:
Alisiya [41]3 years ago
7 0
 <span>Use the kinematic equation vf^2 = vi^2 + 2ad where; 
vf = ? 
vi = 0 m/s 
a = 9.8 m/s^2 
d1 = 10 m 
d2 = 25 m 

final velocity at the ground (d1): vf = sqrt(2)(9.8)(10) = 14 m/s 
final velocity to the bottom of the cliff (d2): vf = sqrt(2)(9.8)(25) = 22.14 m/s 
</span>
You might be interested in
1. The diagram shows a satellite traveling in uniform circular motion around the Earth.
FromTheMoon [43]

Answer:

M V R = constant      angular momentum is constant because  no forces act in the direction of V

Since M (mass) = constant

V R = constant

The force is directed along the gravitational force vector (towards the center of rotation)

6 0
1 year ago
For the circuit in the previous part, what happens to the maximum current if the frequency is doubled and the inductance is halv
tamaranim1 [39]

Answer:

Following are the responses to these question:

Explanation:

Since the max^{m} is the current of ckt which depend on the reactance which   inductor that also enables the ckt and inductor resistance (X_L) for capacities

\to X_{C}=\frac{1}{W L}

for

\to X_{L}=wL

When w \longrightarrow 2w

L\longrightarrow \frac{L}{2}

then

\to X_{L}=2 w \times \frac{L}{2}=wL

 therefore, X_{L} remains at the same so, the maximum current remains the in same ckt.

4 0
2 years ago
Find the period of the leg of a man who is 1.83 m in height with a mass of 67 kg. The moment of inertia of a cylinder rotating a
cupoosta [38]

Answer:

2.2 s

Explanation:

Using the equation for the period of a physical pendulum, T = 2π√(I/mgh) where I = moment of inertia of leg about perpendicular axis at one point =  mL²/3 where m = mass of man = 67 kg and L = height of man = 1.83 m, g = acceleration due to gravity = 9.8 m/s² and h = distance of leg from center of gravity of man = L/2 (center of gravity of a cylinder)

So, T = 2π√(I/mgh)

T = 2π√(mL²/3 /mgL/2)

T = 2π√(2L/3g)

substituting the values of the variables into the equation, we have

T = 2π√(2L/3g)

T = 2π√(2 × 1.83 m/(3 × 9.8 m/s² ))

T = 2π√(3.66 m/(29.4 m/s² ))

T = 2π√(0.1245 s² ))

T = 2π(0.353 s)

T = 2.22 s

T ≅ 2.2 s

So, the period of the man's leg is 2.2 s

7 0
3 years ago
If, while standing on the bank of a stream, you wished to spear a fish swimming in the water out in front of you, would you aim
Serggg [28]

Answer:

<em>a) below the observed position</em>

<em>b) directly at the observed position</em>

<em></em>

Explanation:

If I'm standing on the bank of a stream, and I wish to spear a fish swimming in the water out in front of me, I would aim below the observed fish to make a direct hit. This is because the phenomenon of refraction of light in water causes the light coming from the fish is refract away from the normal as it passes  into the air and into my eyes.

If I'm to zap the fish with a taser, I would aim directly at the observed fish because the laser (a form of concentrated light waves) will refract into the water, taking the same path the light from the fish took to get to my eyes.

3 0
3 years ago
A 70-kg boy is surfing and catches a wave which gives him an initial speed of 1.6 m/s. He then drops through a height of 1.60 m,
Tems11 [23]

Answer:

3.6 KJ

Explanation: Given that a 70-kg boy is surfing and catches a wave which gives him an initial speed of 1.6 m/s. He then drops through a height of 1.60 m, and ends with a speed of 8.5 m/s. How much nonconservative work (in kJ) was done on the boy

The workdone = the energy.

There are two different energies in the scenario - the potential energy (P.E ) and the kinetic energy ( K.E )

P.E = mgh

P.E = 70 × 9.8 × 1.6

P.E = 1097.6 J

P.E = 1.098 KJ

K.E = 1/2mv^2

K.E = 1/2 × 70 × 8.5^2

K.E = 2528.75 J

K.E = 2.529 KJ

The non conservative workdone = K.E + P.E

Work done = 1.098 + 2.529

Work done = 3.63 KJ

Therefore, the non conservative workdone is 3.6 KJ approximately

5 0
2 years ago
Other questions:
  • Which law states that for any closed loop, the sum of the length segments times the magnetic field in the direction of the segme
    14·2 answers
  • Why non-metals aren't good at conducting electricity?
    6·1 answer
  • A string that is restricted at both ends has a length of 1.50 m. what is the wavelength of the string’s fundamental frequency?
    12·1 answer
  • How much kinetic energy does a 7.2-kg dog need to make a vertical jump of 1.2 m? (The acceleration due to gravity is 9.8 m/s2.)
    13·2 answers
  • Most scientists believe the Big Bang Theory explains which of the following questions?
    12·2 answers
  • What type of visible light spectrum does the sun produce?
    15·1 answer
  • Calculate the average speed of a gazelle that runs 140 meters in 5.0 seconds.
    14·2 answers
  • do u ever think that how are u living cause we could not even be here and God but made us but had did it all started I believe i
    7·1 answer
  • Sarah and Maisie are analysing data from their school sports day. Looking at the 1500 m results for Stephen, Maisie believes tha
    10·1 answer
  • Need help ASAP
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!