In this reaction, Copper is the element being oxidized because it is losing electrons. It starts with a neutral charge (0) and ends up with a 6+ charge. Because its charge is increasing, it is being oxidized (losing electrons).
Heat can be transferred from one place to another by conduction in solids, convection of fluids like liquids or gases, and radiation. A temperature difference in a system causes heat to move from higher to lower temperatures
Answer:
The number of atoms in the outermost shell
Explanation:
For example, the electron shells in the alkali metals contain the following numbers of electrons:
Li: 2, 1
Na: 2, 8, 1
K: 2, 8, 8, 1
They all have one electron in their outermost shell, and they have similar chemical properties.
Given:
<span> 2.1 moles of chlorine gas (Cl2) at standard temperature and pressure (STP)
Required:
volume of CL2
Solution:
Use the ideal gas law
PV = nRT
V = nRT/P
V = (2.1 moles Cl2) (0.08203 L - atm / mol - K) (273K) / (1 atm)
V = 47 L</span>
Answer:
C)52g KCl in 100g water at 80°C
Explanation:
A saturated solution is one that contains as much solute as it can dissolve in the presence of excess solute at that particular temperature.
A solutibility curve is a graph that shows the variability with temperature of the solubility of a solute in a given solvent. A solutibility curve can provide information of whether a solution formed frommthe solute and solvent are saturated or not at a given temperature.
From the solubility curve in the attachment below:
A) A saturated solution of NH₄Cl will contain about 52 g solute per 100 g sat 50 °C. Thus, a solution of 40 g NH₄Cl in 100 g water at 50 °C is an unsaturated solution.
B) A saturated solution of SO₂ at 10°C will contain about 70 g of solute in 100 g of water. Thus a solution of 2g SO₂ in 100g water at 10°C is an unsaturated solution.
C) A saturated solution of KCl at 80 °C will contain about 52 g of solute in 100 g of water. Thus, a solution of 52g KCl in 100g water at 80°C is a saturated solution.
D) A saturated solution of Kl at 20 °C will contain about 145 g of solute in 100 g of water. Thus, a solution of 120g KI in 100g water at 20°C is an unsaturated solution.