The mutual forces of gravity between the Earth and an object on or near
its surface are (<em>mass of the object</em>) x (<em>acceleration of gravity on Earth</em>).
These two forces are equal, and we call their strength the "weight" of
the object. It's the number shown on the scale as long as nobody has
their thumb on the scale. In this problem, the force is 45N . (That's
about 10.12 pounds.)
The acceleration of gravity on Earth is about 9.8 meters per second² .
So 45N = (mass in kilograms) x (9.8 meters per second²)
Divide each side by 9.8 : Mass = 45/9.8 = <u>4.59 kilograms</u> (rounded)
Answer:
E=0.036 V/m
Explanation:
Given that
Resistivity ,ρ=2.44 x 10⁻⁸ ohms.m
d= 0.9 mm
L= 14 cm
I = 940 m A = 0.94 A
We know that electric field E
E= V/L
V= I R
R=ρL/A
So we can say that
E= ρI/A
Now by putting the values

E=0.036 V/m
Answer:
The time is
Explanation:
From the question we are told that
The period of the circuit is 
Generally voltage maximization of the capacitor occurs during the voltage minimization of the inductor and vise versa
So the time between the voltage maximization of the capacitor and that of the inductor is mathematically represented as

=> 
=>
<h2>
Answer:</h2>
<em>Hello, </em>
<h3><u>
QUESTION)</u></h3>
Assuming that the initial velocity of the jumper is zero, on Earth any freely falling object has an acceleration of 9.8 m/s².
<em>✔ We have : a = v/Δt = ⇔ Δt = v/a </em>
- Δt = (√2xgxh)/9,8
- Δt = (14√10)/9,8
- Δt ≈ 4,5 s