1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Evgen [1.6K]
3 years ago
12

3x + 4y = -4 15x + 20y = -22 One Solution O Infinitely Many Solutions O No Solutions

Mathematics
1 answer:
Basile [38]3 years ago
3 0

Answer:

many solutions

Step-by-step explanation:

You might be interested in
24x^2-55x-24=0 what does x equal?
damaskus [11]
The answer is 2.667.
7 0
3 years ago
14) Rounded to the nearest whole number, the square
Katen [24]

Answer:

3934

Step-by-step explanation:

Round 15,479,652 and find square root.

4 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Solve this:<br><br> -4&lt;3x-4&lt;_ 11<br><br> A. 5 B. 0 C. 0
statuscvo [17]
Your answer most likely will be A
4 0
3 years ago
F(x) = 4^x-1; find f(3)​
charle [14.2K]

Answer:

f(3) = 63

Step-by-step explanation:

f(x) = 4^x-1;

Let x =3

f(3) = 4^3 -1

     = 64-1

     =63

6 0
4 years ago
Read 2 more answers
Other questions:
  • You bought a large container of fruit punch. The label on the container says there are 128fluid ounces of fruit punch in the con
    7·1 answer
  • A variable that is both (1) mutually exclusive, (2) exhaustive, (3) has a rank order AND (4) has equal distance between categori
    13·1 answer
  • In a school, the ratio of musicians to athletes is 3 : 1. The number of musicians is how many times the number of athletes?
    13·1 answer
  • Rewrite the equation below in standard form.
    11·1 answer
  • What is 4 3/4 minus 1/3
    6·1 answer
  • Mario’s Restaurant is planning to tile the floor of their outdoor dining area, represented by the composite figure below. The ti
    12·1 answer
  • A pillow that usually costs $20 is marked down 45%. Table Use the table to find the new price of the pillow.
    14·2 answers
  • A rectangle has a perimeter of 36 inches and a width of 10 inches. What is the length of the rectangle?
    9·1 answer
  • I really think it’s B ...Help?
    11·1 answer
  • 10 +4m when m = -2<br> i really need help on this lol
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!